AES E-Library

AES E-Library

Multi-Scale Auralization for Multimedia Analytical Feature Interaction

Modern human-computer interaction systems use multiple perceptual dimensions to enhance intuition and efficiency of the user by improving their situational awareness. A signal processing and interaction framework is proposed for auralizing signal patterns and augmenting the visualization-focused analysis tasks of social media content analysis and annotations, with the goal of assisting the user in analyzing, retrieving, and organizing relevant information for marketing research. Audio signals are generated from video/audio signal patterns as an auralization framework, for example, using the audio frequency modulation that follows the magnitude contours of video color saturation. The integration of visual and aural presentations will benefit the user interactions by reducing the fatigue level and sharping the users’ sensitivity, thereby improving work efficiency, confidence, and satisfaction.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=20579

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society