AES E-Library

AES E-Library

New Engineering Method for Design and Optimization of Phasing Plug and Dome-Shaped Compression Chamber of Horn Drivers

In this work an accurate analytical solution is found for the sound field in a dome-shaped compression chamber. This simplifies the design and optimization of the compression chamber’s annular exits to suppress high-frequency air resonances. In earlier works by other authors, the solution is also found in spherical coordinates. For low-curvature chambers, an approximation in the form of Bessel function summation was used. For high-curvature compression chambers an analytical approximation did not work and FEA had to be used. The new proposed method is based on Mehler-Dirichlet analytical integral presentation of Legendre functions. This approach handles high-curvature dome chambers and does not require using numerical methods. An evaluation of this new method’s applicability to chambers with various different curvatures was implemented.

Author:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=20375

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society