AES E-Library

AES E-Library

Rapid HRTF Measurement in a Loudspeaker Dome

Document Thumbnail

Spatial audio implementations with binaural playback benefit from personalized HRTF sets. Thus access to an efficient procedure for capturing individual Head Related Transfer Functions (HRTF) is beneficial for media production as well as for research and development in the ?eld. In the newly established Immersive Audio Lab at Hamburg University of Applied Sciences we implemented a fast HRTF measurement procedure in a 33-channel loudspeaker dome, utilizing the Multiple Exponential Sweep Method (MESM) introduced by Majdak, Balazs, and Laback [1]. One measurement of about 4 minutes results in a set of 289 discrete HRIRs, covering 360° in the horizontal plane and roughly -15°...90° elevation.

AES Convention: eBrief:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!

AES - Audio Engineering Society