AES E-Library

AES E-Library

Deep Learning for Timbre Modification and Transfer: An Evaluation Study

In the past years, several hybridization techniques have been proposed to synthesize novel audio content owing its properties from two audio sources. These algorithms, however, usually provide no feature learning, leaving the user, often intentionally, exploring parameters by trial-and-error. The introduction of machine learning algorithms in the music processing field calls for an investigation to seek for possible exploitation of their properties such as the ability to learn semantically meaningful features. In this first work we adopt a Neural Network Autoencoder architecture, and we enhance it to exploit temporal dependencies. In our experiments the architecture was able to modify the original timbre, resembling what it learned during the training phase, while preserving the pitch envelope from the input.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=19513

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society