AES E-Library

AES E-Library

Early Reflection Remapping in Synthetic Room Impulse Responses: Theoretical Foundation

Document Thumbnail

In audio-visual augmented and virtual reality applications, the audio delivered must be consistent with the physical or virtual environment, respectively, in which the viewer/listener is located. Artificial binaural reverberation processing can be used to match the listener’s/viewer's environment acoustics. Typical real-time artificial binaural reverberators render the binaural room impulse response in three distinct section for computational efficiency. Rendering the response using different techniques means that within the response the early reflections and late reverberation may not give the same room-acoustic impression. This paper lays the theoretical foundation for early reflection remapping. This is accomplished by acoustically characterizing the virtual room implied by the early reflections renderer and then later removing that room-character from the response through frequency-domain reshaping.

Author:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=19342

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society