AES E-Library

AES E-Library

On the Importance of Temporal Context in Proximity Kernels: A Vocal Separation Case Study

Document Thumbnail

Musical source separation methods exploit source-specific spectral characteristics to facilitate the decomposition process. Kernel Additive Modelling (KAM) models a source applying robust statistics to time-frequency bins as specified by a source-specific kernel, a function defining similarity between bins. Kernels in existing approaches are typically defined using metrics between single time frames. In the presence of noise and other sound sources information from a single-frame, however, turns out to be unreliable and often incorrect frames are selected as similar. In this paper, we incorporate a temporal context into the kernel to provide additional information stabilizing the similarity search. Evaluated in the context of vocal separation, our simple extension led to a considerable improvement in separation quality compared to previous kernels.

AES Conference:
Paper Number:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

AES - Audio Engineering Society