AES E-Library

AES E-Library

Fast measurement system for spatially continuous individual HRTFs

Document Thumbnail

The head-related transfer functions (HRTFs) play a major role for the auralization of virtual sources around the listener as well as for cross-talk cancellation systems. Generic HRTFs of artificial heads are often used, as measuring individuals using a high spatial resolution is usually time-consuming and tedious. A fast measurement system for HRTFs is presented, consisting of a circular arc of 40 broadband loudspeakers placed on the elevations of a Gaussian grid. By rotating the subject horizontally (either in discrete steps or continuously) HRTFs can be acquired on a spherical surface. Using an optimized version of the multiple exponential sweep technique [Majdak 2007], thousands of discrete points can be measured within a few minutes making the use of individual HRTFs well feasible in practice. This measurement data is used to obtain a spatially continuous representation of the HRTFs by using a reciprocal formulation as modal components of an outgoing spherical wave. The assumed acoustical centre of the wave is varied in order to get a best possible reconstruction for a finite order of spherical harmonics coefficients. This results in a setup independent and compact description of individual HRTFs, allowing to evaluate the binaural transfer functions for any point in near-field or far-field.

Authors:
Affiliation:
AES Conference:
Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=18112

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society