AES E-Library

AES E-Library

Lateral Listener Movement on the Horizontal Plane: Sensing Motion Through Binaural Simulation

An experiment was conducted to better understand first-person motion as perceived by a listener when moving between two virtual sound sources in an auditory virtual environment (AVE). It was hypothesized that audio simulations using binaural cross-fading between two separate sound source locations could represent a sensation of motion for the listener that is equivalent to real world motion. To test the hypothesis, a motion apparatus was designed to move a head and torso simulator (HATS) between two matched loudspeaker locations while recording various stimulus signals (music, pink noise, and speech) within a semi-anechoic chamber. Synchronized simulations were then created and referenced to video. In two separate, double blind MUSHRA-style listening tests (with and without visual reference), 61 trained binaural listeners evaluated the sensation of motion among real and simulated conditions. Results showed that the listeners rated the simulation as presenting the greatest sensation of motion among all test conditions.

AES Conference:
Paper Number:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

AES - Audio Engineering Society