AES E-Library

AES E-Library

A Bayesian Framework for Sound Source Localization

The localization of sound sources, and particularly speech, has a numerous number of applications to the industry. This has motivated a continuous effort in developing robust direction-of-arrival detection algorithms. Time difference of arrival-based methods, and particularly, generalized cross-correlation approaches have been widely investigated in acoustic signal processing. Once a probability function is obtained, indicating those directions of arrival with highest probability, the vast majority of methods have to assume a certain number of sound sources in order to process the information conveniently. In this paper, a model selection based on a Bayesian framework is proposed in order to determine, in an unsupervised way, how many sound sources are estimated together with the parameters estimation. Real measurements using two microphones are used to corroborate the proposed model.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

AES - Audio Engineering Society