AES Store

Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Prediction of Speaker Performance at High Amplitudes

A new method is presented for the numerical simulation of the large signal performance of drivers and loudspeaker systems. The basis is an extended loudspeaker model considering the dominant nonlinear and thermal effects. The use of a two-tone excitation allows the response of fundamental, DC-component, harmonics, and intermodulation components to be measured as a function of frequency and amplitude. After measurement of the linear and nonlinear parameters, the electrical, mechanical, and acoustical state variables may be calculated by numerical integration. The relationship between large signal parameters and non-linear transfer behavior is discussed by modeling two drivers. The good agreement between simulated and measured responses shows the basic modeling, parameter identification, and numerical predictions are valid even at large amplitudes. The method presented reduces time-consuming measurements and provided essential information for quality assessment and diagnosis. The extended loudspeaker model also allows prediction of design changes on the large signal performance by changing the model parameters to reflect the driver design changes. The incorporation of nonlinear parameters into the loudspeaker model allows for optimization in both the small and large signal domains by model prediction.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society