AES E-Library

AES E-Library

Recognition and Prediction of Music - A Machine Learning Approach

Document Thumbnail

This paper contains a description of a machine-learning-based system for recognition and prediction of music. The presented system uses advanced data-mining algorithms: neural networks and rough-sets. The system was applied for two main purposes: recognition of musical: structures (phrase, rhythm and harmony) and for the prediction of musical elements (melody, rhythm and harmony). The system was optimized for each of the purposes. The problems related to the optimization process are presented. Conclusions concerning application of the machine learning methods to the music domain are derived and included.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

AES - Audio Engineering Society