Journal Forum

A Meta-Analysis of High Resolution Audio Perceptual Evaluation - June 2016

Synthetic Reverberator - January 1960

Sound Board: High-Resolution Audio - October 2015

Access Journal Forum

AES E-Library

The Mirror Filter-A New Basis for Reducing Nonlinear Distortion and Equalizing Response in Woofer Systems

Document Thumbnail

A new filter structure, derived from the applicable nonlinear differential equation and inserted in the signal path, reduced loudspeaker nonlinear distortion caused by displacement-sensitive parameters (force factor, stiffness, and inductance) and by the Doppler effect. This filter can also be used for optimizing the linear frequency response (resonance frequency and Q factor) and for protecting against mechanical damage. There is no need for a permanent sensor, a requirement in feedback systems. To adjust the filter parameters automatically to a particular loudspeaker, an iterative method is presented, based on the electrical or acoustical measurement of the overall transfer response. Both the filter and the auxiliary systems for protection and adjustment are implemented in a DSP 56001 and result in a self-learning distortion-reduction system. The system was tested on different loudspeakers, and the measurement results are compared with listening impressions. The possible consequences in loudspeaker design are discussed.

JAES Volume 40 Issue 9 pp. 675-691; September 1992
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is temporarily free for AES members.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society