AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

In-Phase Crossover Network Design

Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system's output then shows no tilt through the crossover region. It is shown that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (that is, rolloff) parameters against phase response (that is, group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the author's delay-derived crossover configuration.

Authors:
Affiliation:
JAES Volume 34 Issue 11 pp. 889-894; November 1986
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society