AES E-Library

AES E-Library

Decorrelated Audio Imaging in Radial Virtual Reality Environments

Document Thumbnail

University of Illinois at Chicago's CAVE2 is a large-scale, 320-degree radial visualization environment with a 360-degree 20.2 channel radial speaker system. The purpose of our research is to develop solutions for spatially accurate playback of audio within a virtual reality environment, reconciling differences between the circular speaker array, the location of a user in the physical space, and the location of virtual sound objects within CAVE2’s OmegaLib virtual reality software, all in real time. Previous research presented at AES 137 detailed our work on object geometry, dynamically mapping a virtual object’s width and distance to the speaker array with volume and delay compensation. Our recent work improves virtual width perception using dynamic decorrelation with transient fidelity, implemented via Supercollider on the CAVE2 sound server.

Authors:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=17884

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society