AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Headphone-Based Virtual Spatialization of Sound with a GPU Accelerator

This paper describes the design of a binaural headphone-based multisource spatial-audio application using a Graphical Processing Unit (GPU) as the compute engine. It is a highly parallel programmable coprocessor that provides massive computation power when the algorithm is properly parallelized. To render a sound source at a specific location, audio samples must be convolved with Head Related Impulse Responses (HRIR) filters for that location. A data base of HRIR at fixed spatial positions is used. Solutions have been developed to handle two problems: synthesizing sound sources positions that are not in the HRIR database, and virtualizing the movement of the sound sources between different positions. The GPU is particularly appropriate for simultaneously executing multiple convolutions without overloading the main CPU. The results show that the proposed application is able to handle up to 240 sources simultaneously when all sources are moving.

Authors:
Affiliations:
JAES Volume 61 Issue 7/8 pp. 546-561; July 2013
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society