AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

A Comparison of Computational Precedence Models for Source Separation in Reverberant Environments

Reverberation continues to be problematic in many areas of audio and speech processing, including source separation. The precedence effect is an important psychoacoustic tool utilised by humans to assist in localisation by suppressing reflections arising from room boundaries. Numerous computational precedence models have been developed over the years and all suggest quite different strategies for handling reverberation. However, relatively little work has been done on incorporating precedence into source separation. This paper details a study comparing several computational precedence models and their impact on the performance of a baseline separation algorithm. The models are tested in a range of reverberant rooms and with a range of other mixture parameters. Large differences in the performance of the models are observed. The results show that a model based on interaural coherence produces the greatest performance gain over the baseline algorithm.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society