AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

Preliminary Evaluation of Sweet Spot Size in Virtual Sound Reproduction Using Dipoles

In a previous study, three crosstalk cancellation techniques were evaluated and compared under different conditions. Least square approximations in frequency and time domain were evaluated along with a method based on minimum-phase approximation and a frequency independent delay. In general, the least square methods outperformed the method based on minimum-phase approximation. However, the evaluation was only done for the best-case scenario, where the transfer functions used to design the filters correspond to the listener's transfer functions and his/her location and orientation relative to the loudspeakers. In this paper we present a follow up evaluation of the performance of the three inversion techniques when these conditions are violated. A setup to measure the sweet spot of different loudspeakers arrangements is described. Preliminary measurement results are presented for loudspeakers placed at the horizontal plane and an elevated position, where a typical 60 degrees stereo setup is compared with two closely spaced loudspeaker. Additionally, two- and four-channels arrangements are evaluated.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society