AES Store

Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Evaluation of Equalization Methods for Binaural Signals

The most demanding test criterion for the quality of binaural simulations of acoustical environments is whether they can be perceptually distinguished from a real sound field. If the simulation provides natural interacting and sufficient spatial resolution, differences are predominantly perceived in terms of spectral distortions due to a non-perfect equalization of the transfer functions of the recording and reproduction systems (dummy head microphones, head-phones). In order to evaluate different compensation methods, several headphone transfer functions were measured on a dummy head. Based upon these measurements, the performance of different inverse filtering techniques re-implemented from literature was evaluated using auditory measures for spectral differences. Additionally, an ABC/HR listening test was conducted, using two different headphones and two different audio stimuli (pink noise, acoustical guitar). In the listening test, a real loudspeaker was directly compared to a binaural simulation with high spatial resolution, which was compensated using seven different equalization methods.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society