AES Store

Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Ambience Sound Recording Utilizing Dual MS (Mid-Side) Microphone Systems Based upon Frequency Dependent Spatial Cross Correlation (FSCC)—Part-2: Acquisition of On-Stage Sounds

In musical sound recording, a forest of microphones is commonly observed. It is for good sound localization and favorable ambience, however the forest is desired to be sparse for less laborious setting up and mixing. For this purpose, the authors studied sound-image representation of stereophonic microphone arrangements utilizing Frequency Dependent Spatial Cross Correlation (FSCC), which is a cross correlation of two microphone's outputs. The authors firstly examined FSCCs of typical microphone arrangements for acquisition of ambient sounds and concluded that MS(Mid-Side) microphone system with setting directional azimuth at 132 degree is the best. The authors also studied conditions of on-stage sounds acquisition and resulted that FSCC of co-axial type microphone takes the constant value of +1, which is advantageous for stable sound localization. Thus the authors further compared additional sound acquisition characteristics of MS system (setting directional azimuth at 120 degree and XY system. As a conclusion, the former is superior. Finally, the author proposed dual MS microphone systems. One is for on-stage sound acquisition set directional azimuth at 120 degree and the other is for ambient sound acquisition set directional azimuth at 132 degree.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society