AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Multi-Source Room Equalization: Reducing Room Resonances

Room equalization traditionally has been implemented as a single correction filter applied to all the channels in the audio system. Having more sources reproducing the same monophonic low-frequency signal in a room has the benefit of not exciting certain room modes, but it does not remove other strong room resonances. This paper explores the concept of using some of the loudspeakers as sources, while others are effectively sinks of acoustic energy, so that as acoustic signals cross the listening area, they flow preferentially from sources to sinks. This approach resists the buildup of room resonances, so that modal peaks and antimodal dips are reduced in level, leaving a more uniform low-frequency response. Impulse responses in several real rooms were measured with a number of loudspeaker positions and a small collection of observer positions. These were used to study the effect of source and sink assignment, and the derivation of an appropriate signal delay and response to optimize the room behaviour. Particular studies are made of a common 5.0 speaker setup, and a stereo configuration with two or more standard subwoofers. A measurable room parameter is defined which quantifies the deleterious effects of low-frequency room resonances, supported by a specific room equalization philosophy. Results are encouraging but not striking. Signal modification needs to be considered.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society