AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

A New Class of Smooth Power Complementary Windows and Their Application to Audio Signal Processing

In this paper we describe a new family of smooth power complementary windows which exhibit a very high level of localization in both time and frequency domain. This window family is parameterized by a "smoothness quotient". As the smoothness quotient increases the window becomes increasingly localized in time (most of the energy gets concentrated in the center half of the window) and frequency (far field rejection becomes increasing stronger to the order of 150 dB or higher). A closed form solution for such window function exists and the associated design procedure is described. The new class of windows is quite attractive for a number of applications as switching functions, equalization functions, or as windows for overlap-add and modulated filter banks. An extension to the family of smooth windows which exhibits improved near-field response in the frequency domain is also discussed. More information is available at http://www.atc-labs.com/technology/misc/windows.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society