AES E-Library

AES E-Library

Jump Resonance in Audio Transducers

Document Thumbnail

The resonance behavior of a driver with low damping is studied. In such a system, the existing nonlinearities can result in jump resonance, a bifurcation phenomenon with two regimes. One regime, accompanied by a sudden decrease in amplitude, is evident when the frequency of excitation is increasing. The other regime, exhibiting a sudden increase in amplitude, is present when the frequency of excitation is decreasing. Jump resonance was experimentally observed in an audio transducer with low damping and subsequently confirmed by analysis and simulation using a detailed dynamic model that includes the most significant sources of nonlinearities. The conclusion of this work is that the primary cause of jump resonance in audio transducers is the nonlinearity in the driver compliance. The importance of this phenomenon increases as the use of current amplifiers becomes more widespread, since the resulting low system damping makes jump resonance more likely.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=12904

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society