AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Comparison between Spherical Headmodels and HRTFs in Upmixing for Headphone-Based Virtual Surround and Stereo Expansion—Part I

In this paper, a first of multiple-parts, we compare the performance of headmodels with head-related transfer functions (HRTFs), which have previously been published, using different upmixing techniques for headphone virtual surround. We consider a spherical head, with and without the pinna or the torso model, whereas for the HRTFs we incorporate the CIPIC, Nagoya, and MIT HRTF sets in the up-mixing. The up-mixing technique includes using the Moorer reverberator, a modified Moorer reverberator and modeling the direct sound, the first several discrete reflections (with adjustable delay and amplitude) and the diffuse field reflections with a tunable frequency dependent decorrelator. Furthermore, since the measured HRTFs can introduce audible coloration we investigate if there is a trade-off between localization and timbre by incorporating complex-domain smoothing of the HRTF time responses. To evaluate the localization and timbre performance between the models we use movie and music content (viz., stereo, ITU downmix, and a commercial down-mix method) as well as Gaussian tone noise bursts of critical bandwidth.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society