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The ability to perceptually modify drum recording parameters in a post-recording process
would be of great benefit to engineers limited by time or equipment. In this work, a data-
driven approach to post-recording modification of the dampening and microphone positioning
parameters commonly associated with snare drum capture is proposed. The system consists
of a deep encoder that analyzes audio input and predicts optimal parameters of one or more
third-party audio effects, which are then used to process the audio and produce the desired
transformed output audio. Furthermore, two novel audio effects are specifically developed to
take advantage of the multiple parameter learning abilities of the system. Perceptual quality of
transformations is assessed through a subjective listening test, and an object evaluation is used
to measure system performance. Results demonstrate a capacity to emulate snare dampening;
however, attempts were not successful for emulating microphone position changes.

0 INTRODUCTION

The positioning and recording of a standard acoustic
drum kit—comprising of kick, snare, toms, and an assort-
ment of hi-hats and other cymbals—is a technical and time-
consuming endeavor. Recording drums may account for as
much as 25% of the whole recording project [1]. During
a typical session, an engineer must modify a large number
of recording parameters to achieve a desired result. Key
considerations include the selection of drums, drumheads,
tuning, and dampening and the selection, arrangement, and
positioning of microphones. These decisions impact the
overall timbral quality of a recording, with certain modifi-
cations producing greater effects than others [2, 3].

Time permitting, an engineer may test different param-
eter options to identify an appropriate configuration for a
song before committing to the final recording; however,
with many variables, this can easily become a lengthy
process. As such, the ability to perceptually modify these
recording parameters in a post-recording process would be
of great benefit to engineers limited by time or equipment,
especially during sessions in which compromises may need
to be made. In this work, a system is proposed for post-
recording modification of the dampening and microphone
positioning parameters associated with snare drum capture.

0.1 Background
Several methods for the automatic mixing of drums have

been proposed [4–6]. Although these look at emulating
processes of the digital mixing stage, the proposed system
attempts to emulate techniques that are carried out prior to
the recording stage. Two notable techniques an engineer can
use to modify snare drum timbre include treating the drum
heads directly through dampening or varying the position
of the microphones around the drum in order to emphasize
or subdue certain timbral characteristics.

Snare batter head dampening is a common timbre ma-
nipulation practice in drum recording [7, 8], which involves
adding mass to the drumhead to remove unwanted over-
tones and shorten decay time to produce a perceptually
tighter, more controlled sound [9, 10]. Engineers place var-
ious materials (e.g., cloth, duct tape, wallet) directly onto
the drumhead to achieve subtle to extreme dampening ef-
fects. Many commercial products such as Big Fat Snare
Drum, Snare Weight, and Moongel allow for the adjust-
ment of dampening amount [11]. The recording engineer
may use several of these techniques to create the intended
drum sound [12]. Once dampening has been applied, those
timbral properties are then committed to the recording, and
one loses the ability to apply additional dampening if later
required or to remove any if too much was used.
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Microphone selection also impacts the timbre of record-
ings [13, 14]. The authors of [15] modified the spectral
characteristics of a snare drum recording to mimic those
of another through the use of a 30-band graphic equalizer
(EQ); however, a limitation of this work was that access to
recordings with target characteristics were required.

Audio effects are an integral part of the music production
workflow that can be used to modify sound characteristics,
such as dynamics, frequency, and timbre. Utilizing audio
effects for a predefined audio transformation can be a labo-
rious task that often requires mastery over a large number
of parameters. As a result, there has been an increasing fo-
cus on audio effects modeling and intelligent audio effects
within the field of music information retrieval.

In recent years, deep learning has demonstrated excel-
lent performance in tasks such as emulating audio effects
through end-to-end transformation methods [16–18], es-
timating audio effect parameters [19], mapping semantic
descriptors to the parameter space of audio effects [20],
and generating audio through differentiable digital signal
processing [21]. More recently, Martinez et al. [22] emu-
lated three common audio production tasks (i.e., mastering,
breath/plosive removal, and tube amplification) through the
use of a deep encoder, which performs parameterization of
third-party audio effects within layers of the network.

0.2 Motivation
The system in [22] facilities training of audio plugin pa-

rameters or a chain of plugins for any desired transforma-
tion, given the appropriate training data. In this paper, the
ability to modify the timbre of an undampened snare record-
ing in order to elicit a perceptual change that corresponds
to that of a dampened snare, referred to as Undampened-
to-Dampened (U2D), will be explored through the use of
multiple audio effects by utilizing the tools presented in
[22]. The inverse transformation is also examined, whereby
a dampened snare recording is modified to perceptually
emulate qualities of an undampened snare recording, re-
ferred to as Dampened-to-Undampened (D2U). In addition
to these dampening transformations, two positional record-
ing parameter changes are explored: bottom-to-top (B2T)
and top-to-bottom (T2B) microphone position.

The remainder of this paper is structured as follows: SEC.
1 outlines the proposed system. SEC. 2 describes the eval-
uation methodology for subjective objective comparisons.
SEC. 3 presents the results from the evaluation, and SEC.
4 provides a discussion. Conclusions and suggestions for
future work are presented in SEC. 5.

1 METHODOLOGY

An overview of the system configuration for transform-
ing an undampened snare drum into a dampened snare is
provided in Fig. 1. In order to automatically carry out dif-
ferent perceptual transformations, DeepAFx [22] is utilized
for its powerful parameter learning and audio processing
capabilities. DeepAFx consists of a deep encoder that first
analyzes the input audio and then predicts the optimum pa-

Fig. 1. System overview for snare dampening with DeepAFx with
third-party audio effect. Solid lines depict flow of audio, the longer
dashed line represents the predicted parameter values, and shorter
dashed lines depict gradient flow.

rameters of one or more effect, which then processes the
audio, producing the desired transformed output audio. The
system makes use of the LV2 audio plugin open standard
and incorporates third-party audio effects as a black box
layer within a deep neural network. The authors provide
the code used in their experiments.1

1.1 Network Architecture
Following [22], an inception-based encoder network [23]

is implemented to predict the audio effect parameter values
required for a desired snare drum transformation. The input
to the network is a log-scaled Mel-spectrogram represented
as a 4D tensor t ∈ R

b×w×h×c, with batch size b, number
of frames w, number of frequency bins h, and channels c.
The model consists of 64 convolutional filters with a 5 × 5
sized kernel followed by 2 × 2 strided max-pooling. This is
followed by six inception blocks with mixed kernel sizes,
each comprised of a naive module with a stride of 2 and
a dimension reduction module [24]. Rectified linear unit
activations are used for all layers apart from the network’s
last layer, which is a fully connected output layer consisting
of r output nodes and a sigmoid activation function, in
which r is the number of parameters associated with a
particular audio effect. The network outputs estimate audio
effect parameter values for each snare drum transformation
under observation.

1.2 Audio Effects
For this study, two novel LV2 audio effects are specifi-

cally developed to take advantage of DeepAFx’s multiple
parameter learning abilities; both effects have high param-
eter counts that would make it tedious and time-consuming
for a human engineer to fine tune each control. Typically
audio production tools are designed with the audio engineer
in mind, graphic user interfaces (GUIs) are implemented,
and variables such are parameter amount, layout, size, and
color are considered in order to enhance the experience of
the user. Allowing DeepAFx to learn the parameters a GUI
is not required, nor are any considerations to the impracti-
cality to a human user.

Both effects are investigated for their timbre-
transforming abilities: a 10-band dynamic EQ (DEQ10) and

1https://github.com/SoMA-group/snarefx.
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30-band dynamic EQ (DEQ30). Typically, dynamic EQs
will consist of four to seven parametric frequency bands
[25, 26], allowing the user to specify center frequency,
Q-factor, and shelf or bell filter types [27, 28]. However,
unlike traditional dynamic EQ, DEQ10 and DEQ30 are im-
plemented as fixed-band graphic equalizers, with fixed cen-
ter frequencies based on the specification for octave bands
and fractional-octave bands described in [29], allowing for
complete dynamic control over the full spectrum.

Dynamic EQ was specifically chosen in order to pro-
vide both spectral and temporal manipulation within one
audio effect [30], often used in mastering applications [31].
The ability to control specified frequency bands over time
lends itself to transformations in which some frequencies
may be similar and others are disparate, such as in the case
of dampening a snare, and in which both high frequencies
are attenuated and their associated envelopes shortened,
whereas the lower frequencies remain mostly unaffected.
This would be difficult to achieve through the use of a stan-
dard full spectrum compressor; thus, dynamic EQ has the
potential to perform better than a standard EQ and com-
pressor combined for particular production tasks.

Both DEQ10 and DEQ30 have the same architecture,
the signal path consisting of cascaded bi-quad peaking fil-
ters. Each frequency band comprises of two such filters; the
gain of the first is controlled dynamically and that of the
second is controlled through the make-up gain parameter
for the band. Dynamic control of each band is achieved
through a standard feed-forward compressor architecture.
Within the side chain for each band, the signal first passes
through a bi-quad band-pass filter, with center frequency
and bandwidth matching that of the corresponding peaking
filter in the signal path. Level detection and ballistics are
carried out within the gain computer of the compressor’s
side chain. The output of this filter undergoes peak am-
plitude detection and then feeds a gain computer with the
following parameters: threshold, attack, release, ratio, and
knee. Each effect has an output gain parameter at the end
of the signal path. A graphical representation of this archi-
tecture is given in Fig. 2. The principle difference between
DEQ10 and DEQ30 is that the first uses an octave band
layout, whereas the second uses third-octave increments.
With six parameters per band and output gain, this gives 61
trainable parameters for DEQ10 and 181 for DEQ30.

In addition to the two novel effects, two open-source
plugins were used.2 Firstly an eight-band parametric EQ
(PEQ), was chosen for its frequency sculpting ability and
for the ubiquitous nature of parametric EQs in audio engi-
neering. Secondly, because applying dampening to a snare
drum alters its envelope characteristic, a transient designer
(TD) was chosen as a possible candidate for a tool that
might perform well at emulating this feature. A transient
designer provides level-independent processing of the sig-
nal’s envelope by using envelope followers to control output
dynamics; this allows transients to be accelerated or slowed
down and sustain to be prolonged or shortened [32].

2http://calf-studio-gear.org/.

DeepAFx also has the ability to train multiple plugins
in a series; chaining multiple effects together is a common
practice among mixing engineers [33], so for this reason,
this aspect was also investigated. The PEQ and TD were
used in conjunction with one another to determine whether
they were able to perform better together, providing both
spectral and temporal manipulations. The order of PEQ and
TD were tested in both configurations, placing TD before
and after PEQ. This was found to have very little audible
difference on the processed audio; for this reason, only the
PEQ+TD configuration was chosen for investigation.

1.3 Loss Function
The objective of the proposed model is to minimize the

multi-scale spectrogram loss (MSL) between target snare
drums and predicted snare transformations. MSL allows the
network to extract information at multiple spectro-temporal
resolutions and is calculated as the sum of the L2 differ-
ence between magnitude and log magnitude spectrograms
computed with different fast Fourier transform resolutions:
r = {2048, 1024, 512, 256, 128, 64}. The spectral loss for
each resolution is defined as

MSLstft(S, Ŝ) =
∑

ri

[||Sri − Ŝri ||2

+ || log Sri − log Ŝri ||2
]
, (1)

where magnitude spectrograms S and Ŝ are computed with
a given fast Fourier transform resolution ri from the target
snare drums and predicted snare transformation audio.

1.4 Network Training
The deep encoder takes data x as input and parameters λ.

Audio is pre-processed through resampling and conversion
to a spectrogram representation. Following [22], snare drum
recordings are resampled to 44.1 kHz, and the short-time
Fourier transform (STFT) of each snare is calculated using
a Hanning window with a size of 1,024 samples and a
hop size of 256 samples to facilitate the desired temporal
resolution of the network input. The magnitudes of STFT
are transformed to log-scaled Mel-spectrograms with 128
Mel-frequency bands.

The model is trained using the Adam optimizer [34] with
a learning rate 1e–4, where each iteration takes a mini-batch
of 100 examples. Network weights are initialized using
He’s constant [35] to promote equalized learning. Once
model performance ceases to improve over 25 epochs, early
stopping is applied to complete training, and the epoch that
achieves the best accuracy on the validation set is used for
testing. Training was carried out on a Nvidia TESLA M40.

2 EVALUATION METHODOLOGY

The system presented in SEC. 1 is assessed through two
evaluations to determine 1) perceptual quality of the trans-
formations through a subjective listening test and 2) simi-
larity of the transformed audio compared to the target audio
through an objective evaluation using various comparative
metrics. For each type of transformation under investiga-
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Fig. 2. Architecture of 10-band dynamic equalizer (DEQ10) and a 30-band dynamic equalizer (DEQ30) audio effects.

tion, the unprocessed snare drums from the test dataset of
input-target pairs are transformed using the proposed au-
dio effect configurations, where parameter values for each
audio effect are inferred from the trained encoder network.

2.1 Dataset
In order to train DeepAFx to learn the most suitable pa-

rameters for any given audio processing task it requires
input-target paired audio as supervision. The training data
for each of the four transformation tasks is comprised of
specific subsets from the Snare Drum Data Set (SDDS)
[36].3 From the four subsets, 3,000 input-target pairs were
randomly selected to create the test set. SDDS is a com-
prehensive acoustic snare drum dataset, featuring multi-
velocity recordings of ten different snare drums, each cap-
tured with 53 studio microphones, using various commer-
cial dampening techniques.

One of the dampening methods used in SDDS was a
BigFatSnareDrum (BFSD), a specialized device designed
to dampen a snare or tom, placed directly on top of the batter
head. This allows for exact repeatability because it covers
the entirety of the drumhead and could only be placed in
one position unlike other products. Although SDDS in-
cluded other dampening methods such as MoonGel, BSFD
was chosen to be used for the dampening transformations
because it produces a distinct timbral change. The BFSD is
also used for the D2U transformation. For each U2D and
D2U input-target pair, the snare drum, microphone, and mic
position were all identical, with the only variable being the
dampening, either undampened or dampened with a BFSD.

Individual strikes from each pair were matched based
on closest peak amplitude levels and time-aligned using
cross correlation. For the positional transformation of T2B
and B2T, only eight of the same microphones were used
in both top and bottom positions. These pairs were used
on all 10 snare drums and for all dampening methods; the
paired strikes were identical performances because the top

3http://dmtlab.bcu.ac.uk/matthewcheshire/audio/sdds.

and bottom microphones were recorded simultaneously. For
each subset, 80% was used for training, 10% for validation,
and the remaining 10% for test data for later evaluation.
Once processed by the trained models, the evaluation data
was used for the comparative metrics and provided stimuli
for the subjective listening tests.

2.2 Subjective Evaluation
A subjective listening test was carried out using a multi-

ple stimulus approach in order to determine whether partic-
ipants would perceive the transformed audio as comparable
to the real-world recording parameter adjustments it was
emulating. The test was implemented using the Web Audio
Evaluation Tool [37] and was carried out by 25 participants
between the ages of 20–42 (mean: 27), and their experience
in audio-related fields ranged from 1 to 25 years (mean: 9).
Participants were instructed to use the highest-quality play-
back system available to them. They were required to pro-
vide the specification of equipment used, and all systems
reported were deemed to be suitably professional.

The four transformations were evaluated on separated
pages of the listening test. On each page, participants were
presented with seven sliders, each corresponding to a dif-
ferent audio sample. The page and slider order were ran-
domized, and slider starting position was as well. The seven
audio stimuli were comprised of the unprocessed input used
as a baseline for similarity, with the target acting as a hid-
den reference, and the five samples of the input processed
by the five different plugin chains. Participants were in-
structed to arrange stimuli based on their similarity to the
reference and use the full range of the scale, placing the
most similar at the top and least similar at the bottom. The
hidden reference was used to ensure participants could ac-
curately identify the identical sample to the reference. No
low anchor was used, in order to allow participants to rate
the perceptually least similar stimuli lowest on the rating
scale. Stimuli were loudness normalized to –23 LUFs.
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Fig. 3. Mel-scaled log frequency spectrograms for (a) Undampened-to-Dampened with 10-band dynamic equalizer (DEQ10) and (b)
Dampened-to-Undampened with a transient designer (TD). Input snare drums (left), target (center), output transformations (right).

Listening test stimuli are available for audition.4 The
input-target pairs for each transformation were randomly
selected from the test data subset (SEC. 2.1). Participants
could not move on to the next page until all stimuli were
played at least once and all sliders were moved. Fig. 3
presents an example of (a) U2D snare transformation using
DEQ10 and (b) D2U snare transformation using TD.

2.3 Reconstruction Metrics
In order to evaluate the ability of the model to produce

desired transformations of snare recordings, how accurately
the transformed examples Ŝ match the target examples S
Recording pairs in the test set introduced in SEC. 2.1 are
evaluated using reconstruction metrics in two experiments
comparing timbre and pitch characteristics of the trans-
formed snare drums. Each transformation type is grouped
into two tasks: 1) dampening (i.e., U2D and D2U) and 2)
positional (i.e., T2B and B2T) and is evaluated with a range
of spectral representations and metrics focused on timbral
(see SEC. 2.3.1) and pitch (see SEC. 2.3.2) reconstruction
capabilities of the model.

To extract the selected comparative metrics, a magnitude
spectrogram Sstft is computed using the STFT for each audio
file using an n-length Hann window (n = 2,048) with a hop
size of n

4 . Sstft is additionally mapped onto the Mel-scale or
converted to Mel-frequency cepstral coefficients, resulting
in SMel and Smfcc, respectively.

4https://dmtlab.bcu.ac.uk/matthewcheshire/audio/jaes_samples/.

2.3.1 Timbral Reconstruction
Timbral reconstruction metrics in the first experiment

include MSL (see SEC. 1.3) and spectral cosine distance
(SCD) metrics as used in [22], along with log-spectral dis-
tance (LSD) [38] and Pearson correlation (PC) coefficients,
which were previously employed in evaluations of deep
generative models for music signals as an objective mea-
sure of audio quality [39, 40]. Additionally, the cosine sim-
ilarity (CS) metric based on spectral difference functions
(SDFs) used in research on automatic event detection [41]
and automatic music remixing [42] are used. The imple-
mentation by [22] is followed for the computation of MSL
and SCD metrics, in which the former uses STFT magni-
tudes and latter uses 13 Mel-frequency cepstral coefficients
(excluding the first coefficient). The LSD is calculated us-
ing Mel-spectrograms as follows:

L SDMel(S, Ŝ) =
√∑

[10 log10(|S|/|Ŝ|)]2. (2)

Following [41], spectral difference envelopes E are com-
puted as

ES(t) =
K−1∑
k=0

{
H (|Sk(t + 1)| − |Sk(t)|)}, (3)

where S represents a Mel-spectrogram with K bins. The
H (x) = (x + |x |)/2 is a half-wave rectifier, which returns
zero for negative arguments. The calculations of the ES

envelopes is the same for EŜ . Following [43], envelope
reconstruction of the transformations is evaluated with co-
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sine similarity calculated between envelopes extracted from
target and transformed recordings as follows:

C Ssd f (S, Ŝ) = ES · EŜ

‖ES‖‖EŜ‖
, (4)

where · represents a dot product between E . C Ssdf will be
close to unity for very similar drum envelopes and nearer
to zero for dissimilar ones. Spectral difference functions
are then calculated as the sum of the first-order difference
between each spectrogram (e.g., [44]). The resulting en-
velopes are then normalized between [0, 1].

All reported timbral reconstruction experiments are pre-
sented as means calculated over the test set (see SEC. 2.1)
except the M SLstft metric, which is represented as the sum
of L2 differences [see Eq. (1)]. Although the computation of
PCs is described in the following section, here they are re-
ported as mean PC coefficients averaged over the frequency
axis.

2.3.2 Pitch Reconstruction
In the second experiment, a pitch-based reconstruction

metric, which was previously used to evaluate the audio
quality of pitched instruments generated with an adversarial
autoencoder [39], was implemented. This approach is mod-
ified to suit snare drum frequency ranges. The use of Mel-
spectrograms is opted for, as opposed to constant-Q trans-
form spectrograms used in [39], because a logarithmically-
spaced frequency range provides a more even represen-
tation over the fundamental frequencies of snare signals
than frequency representations spaced over musical octaves
(e.g., constant-Q transforms).

3 RESULTS

3.1 Subjective Results
3.1.1 Dampening

Fig. 4 presents normalized violin plots showing the
dampening transformation results for the subjective listen-
ing test (means are depicted by asterisks, and medians are
denoted by black horizontal lines). A one-way analysis of
variance (ANOVA) was used to determine whether distri-
butions of the responses have a common mean—that is,
whether the plugin chains under evaluation had a differ-
ent effect on the subjective scores of similarity. U2D (p =
3.12e–14) and D2U (p = 4.81e–14) both had p < 0.05. The
small p values allow for rejection of the hypothesis that all
group means are equal and indicate that the different ratings
are not the same as each other.

A post-hoc multiple pairwise comparison was used to
establish which of the ratings were significant based on the
results from the ANOVA test. As per the recommendations
in [45], Tukey’s Honestly Significant Difference (HSD) test
was used for this comparison. The U2D subjective listening
test showed promising results. It can be seen in Fig. 4 that
DEQ10 (mean: 0.66) and DEQ30 (mean: 0.58) are rated
more similarly to the hidden reference (mean: 1) than the
input (mean: 0.3). All participants correctly identified the
hidden reference, placing it at the top of the rating scale.

Fig. 4. Dampening results from listening test. DEQ10 = 10-band
dynamic equalizer; DEQ30 = 30-band dynamic equalizer; PEQ
= parametric equalizer; TD = transient designer.

The ratings for DEQ10 and DEQ30 were both statistically
higher than the input (p = 2.07e–08 and p = 9.84e–06,
respectively) using HSD. This suggests that both of these
effects moved the processed input perceptually closer in
similarity to the reference, which in this instance was a
snare drum recording dampened with a BFSD.

Although not able to completely emulate the real damp-
ening effect, these results indicate that the transformation
is indeed creating a more dampened sound compared with
the undampened recording. It should be noted that all par-
ticipants were able to correctly identify the hidden refer-
ence and placed it at the top of the scale for all four test
pages. Although TD (mean: 0.42) was rated higher than the
input overall, the ratings were not significantly higher (p
= 0.054). Likewise, although PEQ and PEQ+TD do have
lower overall ratings than the input, they are not statistically
different. For D2U, the only effect that had a significantly
higher rating (p = 0.0012) than the input (mean: 0.4) was
TD (mean: 0.63) based on HSD, which can be seen in Fig. 4.

3.1.2 Positional
The listening test results for the positional transformation

are presented in Fig. 5. All participants correctly identified
the hidden reference (mean: 1). An ANOVA was used again
to determine whether any of the ratings were significantly
different; for B2T transformations, it was found that there
were no statistical differences between any of the scores
(p = 0.42). This can be seen by the relatively close means
and overlapping ranges of the different ratings. Although
DEQ10 has a higher rating (mean: 0.49) than the input
(mean: 0.36), these ratings were not statistically different
from each other when the HSD test was conducted.

For T2B, some significant differences were shown based
on the results from an ANOVA (p = 1.54e–11). The
HSD test revealed that the performance of both PEQ and
PEQ+TD (mean: 0.34 and 0.16, respectively) were statisti-
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Table 1. Dampening task results using Mel-spectrograms: mean multi-scale loss (MSL), spectral cosine distance (SCD), log-spectral
distance (LSD), mean Pearson correlation (PC), and envelope cosine similarity (CS). Lower values indicate greater similarity, except

for the PC and CS metrics, for which higher values do.

MSLstft SCDmfcc LSDMel PCMel CSsdf

Name U2D D2U U2D D2U U2D D2U U2D D2U U2D D2U

PEQ 8.31 65.57 0.75 0.90 2.53 3.09 0.68 0.52 0.86 0.69
TD 6.92 12.90 0.73 0.85 2.78 2.72 0.64 0.60 0.70 0.91
PEQ+TD 8.91 39.96 0.64 0.87 2.45 3.49 0.62 0.45 0.61 0.52
DEQ10 4.77 11.83 0.55 0.80 2.13 4.32 0.70 0.68 0.89 0.90
DEQ30 5.46 8.01 0.63 0.87 2.25 4.71 0.69 0.68 0.86 0.90

Bold values indicate best score (highest or lowest based on metric). DEQ10 = 10-band dynamic equalizer; DEQ30 = 30-band dynamic equalizer;
D2U = Dampened-to-Undampened; mfcc = Mel-frequency cepstral coefficient; PEQ = parametric equalizer; sdf = spectral difference function; stft
= short-time Fourier transform; TD = transient designer; U2D = Undampened-to-Dampened.

Fig. 5. Positional results from listening test. DEQ10 = 10-band
dynamic equalizer; DEQ30 = 30-band dynamic equalizer; PEQ
= parametric equalizer; TD = transient designer.

cally lower than the input (mean 0.58), with PEQ+TD be-
ing rated least similar to the target. TD had slightly higher
ratings (mean 0.64) than the input, but again, these ratings
were not statistically different from each other. This showed
that for T2B positional changes, no method was successful
at moving the input perceptually closer to the target, with

both PEQ and PEQ+TD statistically worsening similarity.
For B2T, no significant effects were seen, either positively
or negatively, by any of the transformations.

3.2 Objective Results
Several of the objective metrics for U2D shown in Table 1

display similar trends to the subjective evaluations. For U2D
all metrics showed DEQ10 to be most similar to the target.
For D2U, TD rated most similar in the subjective evaluation
and measured most similar when using SCD, LSD, and CS;
however, unlike the subjective ratings when using MSL and
PC, DEQ30 performed the best.

The objective metrics for the positional tasks can be seen
in Table 2, DEQ10 had the highest similarity for T2B and
B2T when measured with MSL and PC, respectively. PEQ
also showed favorable results for T2B when using LSD
and B2T when using both MSL and CS. TD was another
effect that performed well across different metrics because
it displayed the highest similarity with both SCD and PC
for the T2B transformation. PEQ+TD was the only effect
that presented strong similarity for one metric alone, with
it scoring most similarly when using SCD for B2T.

4 DISCUSSION

The results from the listening test indicate that D2U may
be a harder transformation to emulate than U2D, with both
DEQ10 and DEQ30 being rated statistically more similar

Table 2. Positional task results, metrics are the same as those used in Table 1. Lower values indicate greater similarity, except for the
PC and CS metrics, for which higher values do.

MSLstft SCDmfcc LSDMel PCMel CSsdf

Name B2T T2B B2T T2B B2T T2B B2T T2B B2T T2B

PEQ 7.86 10.63 0.39 0.43 2.09 2.11 0.64 0.53 0.91 0.87
TD 10.16 7.35 0.40 0.39 2.34 2.07 0.61 0.64 0.89 0.92
PEQ+TD 17.86 23.09 0.35 0.42 1.81 2.45 0.52 0.38 0.48 0.57
DEQ10 8.17 5.83 0.54 0.50 2.39 2.54 0.66 0.54 0.83 0.87
DEQ30 8.27 6.33 0.68 0.62 2.61 3.01 0.65 0.54 0.81 0.88

Bold values indicate best score (highest or lowest based on metric). B2T = bottom-to-top microphone position; CS = cosine similarity; DEQ10 =
10-band dynamic equalizer; DEQ30 = 30-band dynamic equalizer; LSD = log-spectral distance; mfcc= Mel-frequency cepstral coefficient; MSL =
multi-scale loss; PC = Pearson correlation; PEQ = parametric equalizer; SCD = spectral cosine distance; sdf = spectral difference function; stft =
short-time Fourier transform; T2B = top-to-bottom microphone position; TD = transient designer.
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Fig. 6. Mean smoothed Pearson correlation results computed with
Mel-spectrograms for the dampening task. DEQ10 = 10-band
dynamic equalizer; DEQ30 = 30-band dynamic equalizer; PEQ
= parametric equalizer; TD = transient designer.

to the target for U2D but had ratings that were not signifi-
cantly different to the input when used for D2U. Dampen-
ing a snare drum removes high-frequency energy, whereas
removing dampening increases higher frequencies. When
dealing with a heavily dampened snare recording, the high-
frequency content has already been removed, and it shows
that DeepAFx was not able to learn optimal parameters for
the effects to enhance the missing information.

TD was most successful for the D2U transformation,
likely because of TD’s release boost parameter, shaping
the envelope of the drum recording to better emulate an
undampened strike. One possible alternation to DEQ10 and
DEQ30 that may have facilitated better results for D2U
would be to change the ratio parameter to allow values
below 1. This would create an expansion effect instead of
a compression effect for each frequency band, which could
possibly be used to create a similar effect to that of the
TD. Fig. 6 displays the mean smoothed PC results for the
dampening tasks. High degrees of similarity to the target
can be observed by both DEQ10 and DEQ30 only for the
higher-frequency ranges for U2D. Little difference is seen
between any of the plugins for the lower-frequency bands.
Because high frequencies are most affected by dampening,
the high measure of similarity in these important bands is
likely responsible for the significantly higher ratings in the
subjective evaluation.

For D2U, DEQ10 and DEQ30 have the highest mea-
sures of similarity in the mid-range and upper-mid–range
frequency bands; however, this similarity is not reflected in
the subjective tests. Although TD was subjectively the most
similar to the target, the PC in Fig. 6 shows that it does not
outperform DEQ10 or DEQ30, suggesting that envelope
similarity is more important for D2U than spectral simi-

Fig. 7. Mean smoothed Pearson correlation results computed with
Mel-spectrograms for the positional task. DEQ10 = 10-band dy-
namic equalizer; DEQ30 = 30-band dynamic equalizer; PEQ =
parametric equalizer; TD = transient designer.

larity. The subjective evaluation for B2T did not show any
effect chain to statistically produce different ratings. In the
case of T2B, PEQ and PEQ+TD produced ratings that were
statistically lower than the input. A possible cause for this
may be that the input is rated similar to the target. With
little timbral disparity between input and target, it may be
more difficult for DeepAFx to use the provided plugins
to make the necessary improvement. PEQ and PEQ+TD
also showed very low similarity for the mean smoothed PC
results for T2B seen in Fig. 7, with the most notable dissim-
ilarity being in the lower-frequency ranges and upper-mid
range. PEQ+TD also showed very poor similarity in the
lower frequencies for B2T; however, this was not reflected
in the subjective evaluations.

The stimuli selected for the listening tests may not best
exemplify the ideal transformation because the input-target
pairs were chosen randomly from the available evaluation
data. Thus, more representative samples that were not able
to be assessed during the subjective evaluations may ex-
ist. Other variables, such as timbral differences associated
with velocity disparity, could also play a part in the subjec-
tive perception of similarity. The effects of dampening or
microphone placement may be less pronounced when the
snare is played very lightly. Certain microphones may be
more adept at capturing timbral subtleties making it eas-
ier for a listener to distinguish changes, or particular snare
drums may emphasis the effects of parameter changes more
so than others. The relationship between subjective ratings
and objective metrics cannot be strongly linked because the
objective measures made use of all samples from the eval-
uation data. In most cases DEQ10 outperformed DEQ30,
which indicates that octave-band control (i.e., DEQ10) had
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sufficient timbral shaping abilities and third-octave band
(i.e., DEQ30) had no additional benefits.

5 CONCLUSION

In this study, a deep learning system for automatic mod-
ification of snare drum recording parameters has been in-
vestigated. Two novel audio effects, an octave-band and
third-octave–band dynamic EQ with fixed center frequency
bands and trainable parameters, were created specifically
for use within this system. Results from a subjective eval-
uation demonstrated that with particular effects, the sys-
tem was able to move perceptually closer to the real-world
targets for dampening tasks but was unsuccessful in po-
sitional transformations. Objective metrics also revealed
a tendency toward improvements in similarity for certain
transformations. Most notably, DEQ10 performed best at
Undampened-to-Dampened in all measures.

A possible direction for future research in this area would
be to assess the benefits of additional computational power,
larger datasets, and alternative architectures to improve the
quality of the transformations. The authors would also like
to explore more aspects of the recording process, for exam-
ple, transformations between different drum shell materials
and investigation of other audio effects, such as distor-
tions or reverbs for their timbral shaping capabilities. Ad-
ditionally, subsequent studies could investigate methods for
navigating the network’s latent space. Navigation controls
could be provided as a GUI to creatively interpolate be-
tween transformations or refine the estimated parameters.

6 REFERENCES

[1] R. Toulson, “The Perception and Importance of
Drum Tuning in Live Performance and Music Production,”
in Proceedings of the 4th Art of Record Production Confer-
ence (Lowell, MA) (2008 Nov.).

[2] B. Owsinski and D. Moody, The Drum Recording
Handbook (Hal Leonard, Milwaukee, WI, 2009).

[3] B. Bartlett and J. Bartlett, Practical Recording Tech-
niques: The Step-by-Step Approach to Professional Audio
Recording (Focal Press, Waltham, MA, 2008), 5th ed.

[4] K. Yoshii, M. Goto, and H. Okuno, “INTER:D: A
Drum Sound Equalizer for Controlling Volume and Timbre
of Drums,” in Proceedings of the 2nd European Workshop
on the Integration of Knowledge, Semantics and Digital Me-
dia Technology, pp. 205–212 (London, UK) (2005 Nov.).
https://doi.org/ds85t4.

[5] D. Moffat and M. B. Sandler, “Machine Learning
Multitrack Gain Mixing of Drums,” presented at the 147th
Convention of the Audio Engineering Society (2019 Oct.),
e-Brief 527.

[6] M. A. Martı́nez Ramı́rez, D. Stoller, and D. Moffat,
“A Deep Learning Approach to Intelligent Drum Mixing
With the Wave-U-Net,” J. Audio Eng. Soc., vol. 69, no. 3,
pp. 142–151 (2021 Mar.). https://doi.org/h4zh.

[7] M. Seymour, “Engineer’s Guide To Tuning and
Damping Drums,” https://www.soundonsound.com/

techniques/engineers-guide-tuning-and-damping-drums
(2010 Aug.).

[8] N. D’Virgilio, “How to Control Drum Sus-
tain With Dampening,” https://www.sweetwater.com/
insync/how-to-control-drum-sustain-with-dampening/
#:∼:text=Tear%20a%20small%20piece%20of,to%
20really%20dampen%20the%20head.&text=Moongel%
20is%20a%20great%20product%20to%20keep%20in%
20your%20stickbag (2014 Sep.).

[9] M. Major, Recording Drums: The Complete Guide
(Course Technology PTR, Boston, MA, 2014).

[10] M. H. Parsons, The Drummer’s Studio Survival
Guide: How to Get the Best Possible Drum Tracks on Any
Recording Project (Modern Drummer Publications, Cedar
Grove, NJ, 1996).

[11] B. Gibson, Sound Advice on Recording & Mixing
Drums (Alfred Music, Los Angeles, CA, 2004).

[12] B. Owsinski, The Recording Engineer’s Handbook
(Bobby Owsinski Media Group, Burbank, CA, 2017), 4th
ed.

[13] M. Cheshire, J. Hockman, and R. Stables, “Micro-
phone Comparison for Snare Drum Recording,” presented
at the 145th Convention of the Audio Engineering Society
(2018 Oct.), paper 10040.

[14] K. Pedersen and M. Grimshaw-Aagaard, The
Recording, Mixing, and Mastering Reference Handbook
(Oxford University Press, New York, NY, 2019).

[15] M. Cheshire, R. Stables, and J. Hockman, “Micro-
phone Comparison: Spectral Feature Mapping for Snare
Drum Recording,” presented at the 147th Convention of
the Audio Engineering Society (2019 Oct.), paper 10263.

[16] M. A. Martı́nez Ramı́rez, E. Benetos, and J. D.
Reiss, “Deep Learning for Black-Box Modeling of Audio
Effects,” Appl. Sci., vol. 10, no. 2, paper 638 (2020 Jan.).
https://doi.org/gppmr6.

[17] A. Wright, E.-P. Damskägg, L. Juvela, and V.
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