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ABSTRACT

A recent work presented the subjective ratings from an extensive perceptual quality evaluation of audio signals,
where isolated coding artifact types of varying strength were introduced. We use these ratings as perceptual
reference for studying the performance of 11 well-known tools for objective audio quality evaluation: PEAQ,
PEMO-Q, ViSQOLAudio, HAAQI, PESQ, POLQA, fwSNRseg, dLLR, LKR, BSSEval, and PEASS. Some tools
achieve high correlation with subjective data for specific artifact types (Pearson’s r > 0.90, Kendall’s t > 0.70),
corroborating their value during the development of a specific algorithm. Still, the performance of each tool varies
depending on the artifact type and no tool reliably assesses artifacts from parametric audio coding. Nowadays,
perceptual evaluation remains irreplaceable, especially when comparing different coding schemes introducing
different artifacts.

1 Introduction

Audio coding has the goal of optimizing the quality that
is perceived by a human listener when storing or trans-
mitting audio at a given bit rate. Perceptual evaluation
via formal listening tests (often referred to as subjective
evaluation) is the most reliable method for audio qual-
ity evaluation [1]. This is however time-consuming and
costly and cannot be easily carried out at each develop-
ment stage. Therefore, objective evaluation measures
are desired, i.e., computational methods that are able
to assess the quality of audio as closely as possible to
the human assessment.

Such methods were developed in the field of audio and
speech coding as well as in related fields. In this paper,
we test the quality evaluation tools listed in the follow-
ing, grouped by their original application context.

Audio and Speech Coding:
• Perceptual Evaluation of Audio Quality (PEAQ);
• PErception MOdel-based Quality (PEMO-Q);
• ViSQOLAudio;
• Hearing-Aid Audio Quality Index (HAAQI);
• Perceptual Evaluation of Speech Quality (PESQ);
• Perceptual Objective Listening Quality Assess-

ment (POLQA).

Speech Enhancement:
• Frequency-Weighted Segmental Signal to Noise

Ratio (fwSNRseg);
• Log-Likelihood Ratio Distance (dLLR);
• Log Kurtosis Ratio (LKR).

Blind Source Separation (BSS):
• Blind Source Separation Evaluation (BSSEval);
• Perceptual Evaluation methods for Audio Source

Separation (PEASS).
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In [2], extensive subjective data was gathered via lis-
tening test. Subjects assessed the quality of signals that
were distorted in a controlled fashion with different
monaural coding artifacts. Here these ratings averaged
over the subjects are used as perceptual reference in
order to study the performance of 11 well-known objec-
tive evaluation tools on distinct, isolated artifact types.
To the best of our knowledge, this is the most exten-
sive investigation of state-of-the-art objective measures
published so far.

2 Related Works

An overview over typical audio coding artifacts is given
in [3] and [4]; a selection of audio examples for educa-
tional purposes is also presented in [3].
Controlled degradation of audio signals is used in [5–7].
In [5] a set of basic distortions are used to simulate
potential degradations in dialog enhancement services.
Their effect on eight quality metrics is studied by means
of a so-called response score and without comparing
against subjective ratings. The performance of the
objective measures are found to be highly dependent
on the distortion type. In [6] a set of degradations
is proposed, their implementation is made available,
and they are used for studying the robustness of music
processing algorithms. In [7] the focus is on BSS:
different levels of interfering sources, additive Gaussian
noise, and musical noise are simulated and evaluated
via a listening test. The subjective results are compared
with the objective metrics of BSSEval.
The correlation between objective measures and subjec-
tive ratings is studied by many authors, especially in the
field of speech enhancement. In [8] PESQ is shown to
yield good correlation for enhanced speech; dLLR and
fwSNRseg perform nearly as well at a fraction of the
computational cost. In [9] PESQ and PEASS are iden-
tified as the best tools for predicting separated speech
quality. PESQ exhibits good correlation also with the
speech recognition rate [10–12]. More recently, [13]
shows that Cepstral Distance (CD) and fwSNRseg ex-
hibit good correlation with the perceived amount of
reverberation, while no objective measure is found to
correlate well with the overall perceived quality of dere-
verberated speech. In the BSS community, [14] finds
a combination of PEAQ features to be the best predic-
tor for the subjective quality of output signals of BSS.
For coded audio, [15] proposes another combination of
PEAQ features (together with an external feature, i.e.,
the energy equalization threshold).

3 Objective Measures

This Section describes the investigated objective mea-
sures. Table 1 gives an overview of the considered
metrics as well as the ranges and scales on which they
are defined. All the considered measures are intrusive
measures, i.e., they need as input a reference signal and
the processed signal under test in order to quantify their
(perceptual) difference.

Perceptual Evaluation of Audio Quality (PEAQ)
[16] employs a peripheral ear model in order to cal-
culate the basilar membrane representations of refer-
ence and test signal. Aspects of the difference be-
tween these representations are quantified by several
features, i.e., the Model Output Variables (MOVs).
Examples of MOVs are noise-to-mask ratio (NMR),
bandwidth of the signal (BandwidthTest), average dis-
torted block (ADB), average modulation difference
(AvgModDiff), and RMS value of the averaged noise
loudness (RmsNoiseLoud). By means of a neural net-
work trained with subjective data, the MOVs are com-
bined to give the main output that is referred to as Over-
all Difference Grade (ODG). The ODG estimates the
Subjective Difference Grade (SDG) of a listening test
carried out on coded audio signals via a five-grade im-
pairment scale [17]. Hence, the ODG ranges from −4
(very annoying impairment) to 0 (imperceptible impair-
ment). PEAQ can return ODG values slightly higher
than 0, but they are here clipped to 0. A Basic and
an Advanced version of PEAQ are defined. We com-
pare the Basic version made available by the McGill
University as MATLAB code [18] and both Basic and
Advanced versions provided by gstPEAQ [19], referred
to as gstBas and gstAdv, respectively. The individual
MOVs of the Basic version are also investigated.

PErception MOdel-based Quality (PEMO-Q) [20]
aims to be a general measure of audio quality effective
for a wide range of types of signal and not only coded
audio. Its design is founded on a single and coherent
auditory model [21]. After time-alignment, the sig-
nals are transformed into the internal representations
of the auditory model. The cross-correlation coeffi-
cient between the two representations is calculated and
used as a measure of the perceived similarity, i.e., the
Perceptual Similarity Measure (PSM). A regression
function based on subjective data is then applied to
map the PSM to the ODG. In [20], PEMO-Q is shown
to outperform PEAQ. We use the demo version of this
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Measure Worst
score

Best
score Scale

ODG (PEAQ
and PEMO-Q) -4.0 0 (*) Five-grade [17]

ViSQOLAudio 0 1.0 -
HAAQI 0 1.0 -
PESQ 1.0 4.64 MOS [27]

POLQA 1.0 4.75 MOS [27]
fwSNRseg -10 35 dB

dLLR 2.0 0 -
LKR 0.3 (*) 0 (*) -
SAR -10(*) 50(*) dB
APS 0 100 MUSHRA [28]

Table 1: Measures’ ranges and scales. Values limited
in this work are indicated by (*).

measure [22]: higher accuracy should be achieved by
the full version.

ViSQOLAudio [23] is a metric designed for music
encoded at low bitrates developed from Virtual Speech
Quality Objective Listener (ViSQOL). Both metrics
are based on a model of the peripheral auditory system
to create internal representations of the signals called
neurograms [24]. These are compared via an adaptation
of the structural similarity index, originally developed
for evaluating the quality of compressed images.

Hearing-Aid Audio Quality Index (HAAQI) [25] is
an index designed to predict music quality for indi-
viduals listening through hearing aids. The index is
based on a model of the auditory periphery [26], ex-
tended to include the effects of hearing loss. This is
fitted to a database of quality ratings made by listeners
having normal or impaired hearing. The rated signals
feature musical content, modified by different types of
processing found in hearing aids. Some of these pro-
cesses are common also in audio coding. The hearing
loss simulation can be bypassed and the index becomes
valid also for normal-hearing people; we use HAAQI in
this normal-hearing mode. Based on the same auditory
model, the authors of HAAQI also proposed a speech
quality index (HASQI) and a speech intelligibility in-
dex (HASPI): references are given in [25].

Perceptual Evaluation of Speech Quality (PESQ)
[29–31] was designed for speech transmitted over
telecommunication networks. Hence, the method com-
prises a pre-processing that mimics a telephone handset.

Measures for audible disturbances are computed from
the specific loudness of the signals and combined in
PESQ scores. From them a MOS score [27] is predicted
by means of a polynomial mapping function. We use
the wideband mode of the reference software [29].

Perceptual Objective Listening Quality Assessment
(POLQA) [32–34] was developed as a “technology
update” for PESQ and it was designed to predict the
perceived overall speech quality of listening tests that
comply with [27] or [35] (the test signals used in this
work do not meet this requirement). POLQA operates
in two modes: narrowband or superwideband. We use
a proprietary implementation licensed from OPTICOM
(Version 1.1 [32] and Version 2.4 [33, 34]) in the super-
wideband mode. Further improvements to POLQA are
under development [36].

Frequency-Weighted Segmental Signal to Noise Ra-
tio (fwSNRseg) [37] quantifies the ratio of the power
of the reference signal and a noise signal that is ob-
tained as the difference of the reference and the test
signal. FwSNRseg is computed and weighted for
each short time frame and for each subband of a filter-
bank with a critical-band spacing. The implementation
in [38] is used, where the weights are computed from
the subband-magnitude of the reference raised to the
power of 0.2. This implementation limits the values in
the range [−10,35] dB before the time average.

Log-Likelihood Ratio Distance (dLLR) [39] is based
on the assumption that, over short time intervals, speech
can be represented by an all-pole model. Hence, Linear
Prediction Coefficients (LPC) are computed for the
test signal and the reference; the two LPC sets predict
the reference with certain residual energies. dLLR is
defined as the logarithm of the ratio of these residual
energies. We employ the implementation in [38], where
the distance is limited to 2 before averaging over time.

Log Kurtosis Ratio (LKR) is a measure of perceived
musical artifacts caused by spectral holes or islands. It
is calculated as the logarithm of the ratio of the spec-
tral kurtosis after and before processing. LKR was
observed to be related to the perception of musical
noise in [40]. We do not assume any particular value
distribution of the signal power spectra. Instead, the
kurtosis is calculated statistically as per [41].

Blind Source Separation Evaluation (BSSEval) [42,
43] is a multi-criteria performance evaluation toolbox.
A target source signal is assumed to be estimated from
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a mixture of multiple sources. The estimated signal
is decomposed by an orthogonal projection into target
signal component, interference from other sources, ar-
tifacts, and spatial distortion. Metrics are computed as
energy ratios of these components and expressed in dB.
Herein, Source to Artifact Ratio (SAR) is of interest,
i.e., the metric specific to introduced artifacts.

Perceptual Evaluation methods for Audio Source
Separation (PEASS) [44] was designed as a perceptu-
ally motivated successor of BSSEval. The estimated
target signal is decomposed by a projection that is car-
ried out on time segments and with a gammatone fil-
terbank. PEMO-Q [20] is used to provide multiple fea-
tures. Estimates for four perceptual scores are obtained
from these features using a neural network trained with
subjective ratings. Herein, Artifact-related Perceptual
Score (APS) is considered, i.e., the metric that evalu-
ates the presence of computational artifacts.

Calculating PEASS takes exceptionally long: roughly 3
times as long as HAAQI, 10 times as long as PEMO-Q
and BSSEval, 15 times as long as POLQA and PEAQ,
and 40 – 100 times as long as the remaining tools.

4 Audio coding artifacts

The work in [2] presented methods on how to generate
coding artifacts in an isolated and controllable fashion,
by forcing audio encoders into controlled, sub-optimal
operating modes. The following artifact types were
proposed:

• Spectral holes or islands (SH)
(also known as birdies or musical noise);
• Bandwidth limitation (BL);
• Pre-echoes (PE);
• Tonality or harmonicity mismatch (TM);
• Unmasked noise (UN)

(i.e., noise substitution in high frequencies).

Out of these artifacts, SH and BL are caused by quan-
tizing spectral parts to zero in transform based audio
coders (e.g., MP3, AAC). Relatedly, PE are introduced
by temporally smeared quantization noise.

Modern coders apply parametric coding for bandwidth
extension (e.g., HE-AAC), which aims at recreating
the perceptual properties of the higher frequencies,
rather than waveform preserving coding. For a badly
parametrized bandwidth extension, TM and UN arti-
facts can occur. For the generation of those artifacts,

Artifact Control Quality Levels
Type Parameter Q1 Q2 Q3 Q4 Q5

SH hole prob. [%] 70 50 30 20 10
BL freq. [kHz] 3.5 7.0 10.5 12.0 15
PE bitrate [kbps] 24 48 96 128
TM freq. [kHz] 3.0 7.0 9.0 10.5 12
UN freq. [kHz] 3.0 7.0 9.0 10.5 12

Table 2: Parameters used for artifact generation [2].

the high frequency part of the spectrum has been re-
placed either by a scaled copy of the lower part of the
spectrum for TM or random noise of the same spectral
envelope for UN.

Five distinct quality levels for each distortion were
selected: they are summarized in Table 2.

5 Subjective Data

As perceptual reference ratings we consider the average
over the listeners of the ratings gathered via the listen-
ing test described in [2]. Eight items were generated in
the five quality levels for each of the five artifact types.
MUSHRA listening tests [28] were performed with 16
expert normal-hearing listeners (after post-screening).
This resulted in 3200 individual item scores and 200
average scores, which showed a wide coverage of the
quality scale, from poor to excellent. The test was
divided into 4 to 5 sessions to avoid listener fatigue.

The test items were between 3 and 10 seconds long
and contained mostly music. They featured excerpts of
isolated instruments (e.g., solo violin, glockenspiel, cas-
tanets), instrumental ensembles (e.g., orchestral or pop
music) and few pieces containing human voice, singing
or talking, with or without accompaniment. Note that
the focus on musical content is disadvantageous for the
measures designed for the evaluation of speech quality.

As some artifacts affect differently certain types of sig-
nals, disjunct sets of items for different artifacts were
selected. The set of test items included stereo record-
ings, however spatial artifacts concerning the stereo
image were not included in the selected artifacts, so
monaural quality measurements are applicable.1 An
analysis of variance (ANOVA) of the obtained subjec-
tive data is carried out in [2].

1Please note that independent generation of monaural artifacts
(e.g. spectral holes) can still affect the perceived stereo image.
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abs(r) | abs(t) Birdies
Bandwidth
limitation

Pre-echoes
Tonality

mismatch
Unmasked

noise
Mean

Select best MOV 0.92 | 0.75 0.98 | 0.77 0.97 | 0.78 0.81 | 0.74 0.81 | 0.68 0.90 | 0.74
ADB McGill 0.92 | 0.75 0.96 | 0.85 0.93 | 0.74 0.64 | 0.53 0.73 | 0.55 0.84 | 0.68

HAAQI 0.88 | 0.71 0.80 | 0.59 0.92 | 0.73 0.68 | 0.42 0.76 | 0.51 0.81 | 0.59
ODG McGill 0.46 | 0.31 0.95 | 0.84 0.89 | 0.65 0.84 | 0.64 0.73 | 0.53 0.77 | 0.59
ODG gstBas 0.47 | 0.33 0.95 | 0.84 0.89 | 0.64 0.84 | 0.64 0.73 | 0.52 0.77 | 0.59
ODG gstAdv 0.49 | 0.30 0.91 | 0.78 0.91 | 0.70 0.77 | 0.58 0.76 | 0.53 0.77 | 0.58

PESQ 0.74 | 0.58 0.67 | 0.62 0.82 | 0.75 0.77 | 0.47 0.78 | 0.53 0.76 | 0.59
ViSQOLAudio 0.70 | 0.52 0.79 | 0.61 0.88 | 0.62 0.75 | 0.50 0.69 | 0.46 0.76 | 0.54
APS (PEASS) 0.95 | 0.86 0.84 | 0.72 0.51 | 0.41 0.87 | 0.59 0.59 | 0.41 0.75 | 0.60
ODG PEMO-Q 0.93 | 0.77 0.82 | 0.85 0.68 | 0.58 0.62 | 0.39 0.49 | 0.38 0.71 | 0.59
POLQA V1.1 0.81 | 0.67 0.79 | 0.61 0.32 | 0.21 0.73 | 0.41 0.68 | 0.43 0.67 | 0.47

SAR (BSSEval) 0.34 | 0.28 0.91 | 0.77 0.66 | 0.55 0.53 | 0.36 0.52 | 0.37 0.59 | 0.47
POLQA V2.4 0.81 | 0.67 0.56 | 0.39 0.44 | 0.16 0.47 | 0.36 0.60 | 0.19 0.58 | 0.35

fwSNRseg 0.71 | 0.52 0.89 | 0.80 0.66 | 0.49 0.09 | 0.05 0.38 | 0.24 0.54 | 0.42
dLLR 0.02 | 0.03 0.67 | 0.58 0.85 | 0.57 0.13 | 0.02 0.12 | 0.03 0.36 | 0.25
LKR 0.31 | 0.09 0.41 | 0.33 0.04 | 0.05 0.13 | 0.01 0.22 | 0.13 0.22 | 0.12

Table 3: Absolute value of the Pearson’s correlation r and of the Kendall’s rank correlation t for the individual
distortions and mean values. Measures are in order of decreasing mean |r| from top to bottom.

6 Results

6.1 Correlation performance

The quality scores given by the objective measures are
compared with the mean MUSHRA scores. Absolute
Pearson’s linear correlation coefficient r and Kendall’s
rank correlation coefficient t are used as performance
criteria: they are listed in Table 3. The table also shows
“Select best MOV”, i.e., the MOV from Basic PEAQ
(McGill implementation) that correlates best with sub-
jective ratings for each distortion type. This MOV is
shown in the upper-right subplot of Figs. 1 – 5. More-
over, the ADB is shown: this MOV correlates best with
subjective ratings on average.

Figs. 1 – 5 depict the detailed results: the mean
MUSHRA scores (x-axis) are plotted against the objec-
tive quality scores (y-axis). The colors of the circles de-
pict the different quality levels (Table 2). Each dashed
line connects the circles related to the same item, on
which the different quality levels were applied. The
title of each subplot reports the name of the measure
together with the Pearson’s and Kendall’s correlation
coefficients. Both correlation coefficients are calcu-
lated without considering the reference unprocessed
signals (depicted with black circles).

6.2 Discussion

Considering the final output of the evaluation tools,
the best average correlations are achieved by HAAQI
(|r| = 0.81, |t| = 0.59) and the ODG as estimated by
PEAQ2 (|r| = 0.77, |t| = 0.59). HAAQI was specif-
ically designed for music quality and PEAQ was de-
signed for the assessment of audio coding, i.e., both
fit well our test signals. Moreover, HAAQI and PEAQ
perform particularly well for pre-echoes and bandwidth
limitation, which are classical distortions both in hear-
ing aids and audio coding. However, only modest
correlation is exhibited by HAAQI and PEAQ in the
case of tonality mismatch and unmasked noise, i.e.,
the distortions simulating suboptimal parametric cod-
ing of the higher frequency bands. While this could
be not relevant in hearing aids, it is a critical aspect
in audio coding. Only moderate correlation is exhib-
ited even by the the best MOV of PEAQ, suggesting
that a MOV reliably detecting these kinds of distor-
tion is missing. In fact, no codec using this kind of
technique was among the codecs used for the develop-
ment of PEAQ, completed in 2001. Parametric band-
width extension became more customary only later,

2The 3 implementations of PEAQ (gstBas, gstAdv, McGill) show
very similar performance. They are here generally referred to as
PEAQ. The coefficients obtained for McGill are reported in the text.
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e.g., with HE-AAC (using Spectral Band Replication)
that was standardized in 2003 [45]. Interestingly, the
performance of PEAQ is underwhelming for birdies
(|r| = 0.46, |t| = 0.31), while internal PEAQ MOVs
such as ADB still show high correlation coefficients
(|r| = 0.92, |t| = 0.75), suggesting that they are not
sufficiently reflected in the combined ODG. In fact, a
single PEAQ MOV, i.e., ADB shows higher average
performance than the final ODG for our data. Moreover,
mean correlation coefficients |r|= 0.90 and |t|= 0.74
can be achieved by just selecting the best MOV for
each distortion. This can be obtained “manually” if a
developer knows the system under test and the most
relevant distortion that can appear. In this direction,
Figs. 1-5 work as look-up tables for the best MOV in
each case (upper-right subplots).

PESQ is the third best performing tool on average
(|r| = 0.76, |t| = 0.59), in spite of the fact that it was
designed for speech quality, while most of our test
items consist of musical content. Still, Figs. 1 – 5 show
a saturation effect, i.e., scores close to the maximum
are often obtained already for the middle quality levels.

ViSQOLAudio achieves average Pearson’s |r|= 0.76,
similarly to PEAQ and PESQ, even if it does not exhibit
the best |r| for any of the artifact type. However, the
absolute quality ranking across items is often wrong:
similar scores are assigned to the low quality level of
one item and the high quality level of a different item,
resulting in the lower Kendall’s |t|= 0.54.

APS shows moderate average performance. Especially
good performance is observed for birdies (|r| = 0.95,
|t| = 0.86), which is an important distortion in BSS.
APS also exhibits the highest Pearson’s |r| for tonality
mismatch. However, Pearson’s |r| shows here its limi-
tations as it ignores the saturation effect exhibited by
APS. Fig. 4 shows that the most promising measure in
this case is NMR, as unveiled by Kendall’s |t|= 0.74
and, in this regard, PEAQ has the best performing final
output, albeit achieving only Kendall’s |t|= 0.64.

PEMO-Q-based ODG performs well only for birdies
(|r| = 0.93, |t| = 0.77) and bandwidth limitation
(|r|= 0.82, |t|= 0.85). Yet, for bandwidth limitation
PEMO-Q saturates on quality level 3, i.e., similar qual-
ity is measures for crossover frequencies >= 10.5 kHz.

As far as POLQA is concerned, related literature shows
that V2.4 improves on V1.1 [34] and that both versions
improve on PESQ [32] for speech signals perceptually

assessed in tests such as [27] and [35]. Interestingly,
the opposite trend is observed for our data. We suspect
that the measure evolved improving the accuracy for a
specific case, while losing in generality and robustness
if applied to another context. Moreover, the fact that
PESQ and POLQA are designed for speech is evident
considering that they saturate after the second quality
level for bandwidth limitation. The crossover frequency
of this level is 7.0 kHz, i.e., already including the most
important frequency range of speech.
Finally, the lowest correlation coefficients are obtained
for the simplest measures that comprise only little
psycho-acoustical knowledge (fwSNRseg) or none at
all (SAR, dLLR, and LKR). LKR is meant for birdies.
A closer analysis of this case (bottom left subplot in
Fig. 1) shows that LKR performs well in detecting the
relative quality level ranking for individual items, but
the absolute LKR value obtained across different items
cannot be compared directly.

7 Conclusion

Eleven well-known tools for the objective evaluation
of audio quality were applied to 200 signals created by
introducing monaural coding artifacts with controlled
strength within a large quality range. Reliable subjec-
tive ratings were available and used in order to assess
the performance of the tools.
The results show that the performance of each tool de-
pends on the artifact type, as also found in [5]. The qual-
ity of specific artifacts is estimated accurately by spe-
cific tools (Pearson’s |r|> 0.90, Kendall’s |t|> 0.70).
On average, the highest correlation is exhibited by sin-
gle MOVs of PEAQ, followed by HAAQI and the main
output of PEAQ. Lower correlation is observed for
artifacts simulating suboptimal parametric bandwidth
extension, i.e., unmasked noise and tonality mismatch.
This confirms that the measures can predict the quality
of artifacts they have been modeled or trained towards,
but fail to generalize and predict the quality of unknown
artifacts. State-of-the-art objective measurements can
be a powerful tool when the expected artifact character-
istics are known and comparable for different working
points, e.g., when developing a specific algorithm.
Still, objective measurements cannot be expected to
produce reliable results when comparing different cod-
ing schemes, potentially introducing different artifacts.
Nowadays, subjective evaluation remains the most reli-
able method for the assessment and comparison of the
perceptual quality of generalized audio codecs.
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Fig. 1: Artifact type: birdies. Mean MUSHRA scores (x-axis) against objective measures (y-axis). The colors of
the circles depict the different quality levels. Dashed lines connect the circles related to the same items.

20 40 60 80 100
0

20

40

60

80

APS (r=0.84, t=0.72)

20 40 60 80 100

0

20

40

SAR (r=0.91, t=0.77)

20 40 60 80 100
0

10

20

30

fwSNRseg (r=0.89, t=0.80)

20 40 60 80 100
0

0.5

1

1.5

2
dLLR (r=-0.67, t=-0.58)

20 40 60 80 100
1

2

3

4

PESQ (r=0.67, t=0.62)

20 40 60 80 100
-4

-3

-2

-1

0
ODG McGill (r=0.95, t=0.84)

20 40 60 80 100
0

500

1000
BandwidthTest (r=0.98, t=0.77)

20 40 60 80 100
0

1

2

3
ADB (r=-0.96, t=-0.85)

20 40 60 80 100
0

0.05

0.1
LKR (r=-0.41, t=-0.33)

20 40 60 80 100
-4

-3

-2

-1

0
ODG gstAdv (r=0.91, t=0.78)

20 40 60 80 100
-4

-3

-2

-1

0
ODG gstBas (r=0.95, t=0.84)

20 40 60 80 100
-4

-3

-2

-1

0
ODG PEMO-Q (r=0.82, t=0.85)

20 40 60 80 100
1

2

3

4

POLQA V2.4 (r=0.56, t=0.39)

20 40 60 80 100
1

2

3

4

POLQA V1.1 (r=0.79, t=0.61)

20 40 60 80 100
0

0.5

1
HAAQI (r=0.80, t=0.59)

20 40 60 80 100
0.4

0.6

0.8

1
ViSQOLAudio (r=0.79, t=0.61)

Fig. 2: Artifact type: bandwidth limitation.
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Fig. 3: Artifact type: pre-echoes. Mean MUSHRA scores (x-axis) against objective measures (y-axis). The colors
of the circles depict the different quality levels. Dashed lines connect the circles related to the same items.
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Fig. 4: Artifact type: tonality mismatch.
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Fig. 5: Artifact type: unmasked noise. Mean MUSHRA scores (x-axis) against objective measures (y-axis). The
colors of the circles depict the quality levels. Dashed lines connect the circles related to the same items.
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