Cylindrical Radial Filter Design
With Application to Local Wave Field Synthesis

NARA HAHN,1 AES Associate Member, FRANK SCHULTZ,2 AES Associate Member AND
SASCHA SPORS2

1Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
2Institute of Communications Engineering, University of Rostock, Rostock, Germany

The cylindrical radial filters refer to the discrete-time realizations of the radially dependent parts in cylindrical harmonic expansions, which are commonly described by the cylindrical Bessel functions. An efficient and accurate design of the radial filters is crucial in spatial signal processing applications, such as sound field synthesis and active noise control. This paper presents a radial filter design method where the filter coefficients are analytically derived from the time-domain representations. Time-domain sampling of the cylindrical radial functions typically leads to spectral aliasing artifacts and degrades the accuracy of the filter, which is mainly attributed to the unbounded discontinuities exhibited by the time-domain radial functions. This problem is coped with by exploiting an approximation where the cylindrical radial function is represented as a weighted sum of the radial functions in spherical harmonic expansions. Although the spherical radial functions also exhibit discontinuities in the time domain, the amplitude remains finite, which allows application of a recently introduced aliasing reduction method. The proposed cylindrical radial filter is thus designed by linearly combining the spherical radial filters with improved accuracy. The performance of the proposed cylindrical radial filters is demonstrated by examining the spectral deviations from the original spectrum.

0 INTRODUCTION

The spherical and cylindrical harmonic representations of wave fields are commonly used in spatial sound field analysis and reproduction [1–6]. The directional component of the sound field is expressed in terms of spherical and cylindrical harmonics, whereas the radial dependencies are described by the spherical and cylindrical Bessel and Hankel functions in the frequency domain. For the discrete-time modeling and manipulation of the modal representations, their respective radial functions have to be realized as digital filters. These are referred to as the radial filters in the remainder of this paper.

The discrete-time implementation of the radial functions is often performed by sampling the frequency-domain representations. This, however, requires the evaluation of the Bessel and Hankel functions for every frequency bin, which is computationally demanding. Moreover, the inverse discrete Fourier transform of the sampled spectrum typically results in temporally aliased signals. It also introduces a substantial amount of group delay, which makes the frequency-domain approach not suited for real-time applications.

Recently, the time-domain realization of the radial filters has been studied to overcome these disadvantages, with the focus being predominantly on the spherical radial filters. Instead of relying on traditional filter design algorithms (e.g., least squares), the filter coefficients are derived analytically from the mathematical expressions describing the radial functions. Since the coefficients are given in closed form, the filter design can be carried out efficiently. This facilitates the real-time implementation of spatial signal processing applications.

The radial filters associated with the spherical Hankel functions have been commonly realized as infinite impulse response filters whose design is based on the explicit series expansions in the Laplace domain [7–11]. For homogeneous sound fields, the time-domain radial functions are described by polynomials within a finite temporal support and equal to zero elsewhere [12–15]. Because of this temporal property, the corresponding radial filters are often realized as finite impulse response (FIR) filters [16–18]. The
FIR coefficients are commonly obtained by directly sampling the time-domain representations of the radial function. The spectral accuracy of such filters, however, suffers from spectral aliasing, which originates from the infinite bandwidth of the radial function. In [19], the temporal and spectral artifacts resulting from the time-domain sampling of the spherical radial filters were investigated for varying physical variables and design parameters. An improved radial filter design was proposed in [20, 21] where the discontinuities occurring in the time domain are substituted by analytically derived band-limited jump functions, thereby reducing the aliasing artifacts. Since the band limitation exploits polynomial interpolation kernels, the radial filter coefficients are given in closed form.

The design of cylindrical radial filters in the time domain has been relatively unexplored. Although the explicit expressions for the time-domain radial functions are known [22], it is not trivial to achieve a reasonable spectral accuracy. This is mainly because of the slow decay of the spectrum toward high frequencies, which causes strong aliasing artifacts if sampled in the time domain. The band limitation approach employed for the spherical radial filters cannot be applied here, since the amplitude of the time-domain radial functions exhibits unbounded discontinuities. The straightforward solution of increasing the sampling rate comes at the expense of computational cost. In [22], a nonlinear amplitude mapping was applied to the time-domain cylindrical radial functions. Although the aliasing distortion can be effectively reduced, the nonlinear mapping function has to be chosen heuristically.

This article proposes a new time-domain design of the cylindrical radial filters. The FIR coefficients are given in closed form, which is derived analytically from the time-domain representations of the radial functions. Based on the mathematical expressions of the spherical and cylindrical harmonic expansions (SECS. 1.1, 1.2, and 1.3), the cylindrical radial functions are approximated in terms of the spherical radial functions (SEC. 1.4). The temporal and spectral properties of the approximation are investigated with the focus on modal truncation and modal windowing. By exploiting the approximation, the cylindrical radial filters are constructed by linearly combining the spherical radial filters (SEC. 2). The individual spherical radial filters are designed by employing the band-limitation approach summarized in SEC. 2.1. The improved accuracy of the proposed cylindrical radial filters is evaluated in SEC. 2.2 in terms of spectral deviations and normalized squared errors. As a use case, the wave field synthesis (WFS) driving functions for virtual plane waves are computed by using the proposed cylindrical radial filters (SEC. 3). The spatial structure and spectral properties of the synthesized sound fields are presented, demonstrating the benefits of the presented approach.

1 CYLINDRICAL AND SPHERICAL HARMONIC REPRESENTATIONS

This section reviews the cylindrical and spherical harmonic expansions of plane waves. Based on these representations, the relation between the cylindrical and spherical radial function is derived. This will be exploited for the design of the cylindrical radial filters in SEC. 2.

The sound field of a plane wave driven by a Dirac impulse $\delta(t)$ is considered. The sound field is evaluated at a point denoted by $x = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)^T$ where r, θ, and ϕ respectively denote radius, colatitude, and azimuth angle. The plane wave is assumed to propagate parallel to the xy-plane, where the propagating direction is denoted by the unit vector $n_{pw} = (\cos \phi_{pw}, \sin \phi_{pw}, 0)^T$ with ϕ_{pw} denoting the azimuth angle. The time in seconds is denoted by t, and the angular frequency is denoted by $\omega = 2\pi f$, with f denoting the frequency in Hertz. The scalar product of x and n_{pw} is denoted by $\langle x, n_{pw} \rangle$. In frequency-domain expressions, the time harmonic term e^{int} is omitted for brevity. The imaginary unit is denoted by i, and the speed of sound in m/s is denoted by c. In numerical simulations, the speed of sound is set to $c = 343$ m/s.

1.1 Cylindrical Harmonic Expansion

In the frequency domain, the sound field of the plane wave can be expressed in terms of cylindrical harmonics by using the Jacobi-Anger expansion [23, p. 687],

$$e^{-i\frac{\pi}{2}\langle x, n_{pw} \rangle} = \sum_{m=-\infty}^{\infty} i^{-m} J_{m}(\frac{\omega}{c} \rho) e^{i(m\phi - \phi_{pw})}, \tag{1}$$

where $J_m(\cdot)$ denotes the cylindrical Bessel functions of the first kind. For brevity, the radial distance from the z-axis is denoted by $\rho := r \sin \theta = \sqrt{x^2 + y^2}$. The underbraced term represents the radius-dependent and frequency-dependent part of each cylindrical mode. The time-domain representation of the plane wave in the cylindrical harmonics domain reads [22, Eq. (4)]

$$\delta \left(t - \frac{1}{c} \langle x, n_{pw} \rangle \right) = \left\{ \begin{array}{ll}
\sum_{m=-\infty}^{\infty} \frac{c}{\pi \rho} \frac{T_m \left(\frac{\omega}{c} \rho \right)}{\sqrt{1 - \left(\frac{\omega}{c} \rho \right)^2}} e^{i(m\phi - \phi_{pw})}, & \left| \frac{\omega}{c} \rho \right| \leq 1 \\
0, & \left| \frac{\omega}{c} \rho \right| > 1,
\end{array} \right. \tag{2}$$

where $T_m(\cdot)$ denotes the Chebyshev polynomials of the first kind. This follows from the Fourier transform relation of the respective radial functions [24, Eq. (11.4.24)],

$$\mathcal{F}^{-1} \left\{ e^{-i\frac{\pi}{2}\langle x, n_{pw} \rangle} \right\} = \left\{ \begin{array}{ll}
\frac{c}{\pi \rho} \frac{T_m \left(\frac{\omega}{c} \rho \right)}{\sqrt{1 - \left(\frac{\omega}{c} \rho \right)^2}}, & \left| \frac{\omega}{c} \rho \right| \leq 1 \\
0, & \left| \frac{\omega}{c} \rho \right| > 1
\end{array} \right. \tag{3}$$

with $\mathcal{F}^{-1}[\cdot]$ denoting the inverse Fourier transform. Eq. (2) constitutes a Chebyshev series expansion of the Dirac delta function, where $1/\sqrt{1 - (\omega/c\rho)^2}$ corresponds to the weighting function with respect to which the Chebyshev polynomials are orthogonal within $|\frac{\omega}{c} \rho| \leq 1$ [25, Ch. 18]. Please note that the symbol $T_m(\frac{\omega}{c} \rho)$ will be used to represent the Chebyshev polynomials windowed by a rectangular
pulse in the remainder. The finite temporal support within $|\frac{c}{\omega}| \leq 1$ is implicitly assumed, and the expression for the zero part (i.e., $|\frac{c}{\omega}| > 1$) will be omitted for brevity.

The frequency-domain and time-domain cylindrical radial functions are respectively depicted in Figs. 1(a) and 1(c) for $\theta = \frac{\pi}{2}$ (i.e., $\rho = r$). It can be seen that the high-frequency spectra ($\frac{c}{\omega} r > m$) are decaying at the rate of –10 dB/decade irrespective of the harmonic order m. At $\omega = 0$, the magnitude of the zeroth-order radial function is 0 dB, whereas higher-order ($m \geq 1$) radial functions exhibit mth-order zero(s). The time-domain cylindrical radial functions have a finite temporal support and exhibit two discontinuities at $|t| = \frac{c}{\omega}$. As $|t| \to \frac{c}{\omega}$, the amplitude of the time-domain radial functions tends to infinity because of the square root term in the denominator. Since even/odd-order radial functions are even/odd symmetric in the time domain, the corresponding frequency-domain radial functions are purely real/imaginary [26, Sec. 9.5.3].

1.2 Spherical Harmonic Expansion

The sound field of a plane wave can be also expressed in the spherical harmonics domain, where the frequency-domain representation reads [1, Eq. (6.175)]

$$e^{-i \frac{c}{\omega} \cdot (x, n_{pw})} = 4\pi \sum_{n=0}^{\infty} i^{-n} j_n(\frac{c}{\omega} r) \sum_{m=-n}^{n} Y_{nm}(\theta, \phi) Y_{nm}^{*}(\frac{c}{\omega}, \Phi_{pw}),$$

with $j_n(\cdot)$ denoting the spherical Bessel functions of the first kind. The spherical harmonics are denoted by $Y_{nm}(\cdot, \cdot)$ and defined as [25, Eq. (14.30.1)]

$$Y_{nm}(\theta, \phi) = \frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!} P_n^m(\cos \theta) e^{im\phi},$$

with $P_n^m(\cdot)$ denoting the associated Legendre functions. The Condon-Shortley phase term $(-1)^m$ is included in $P_n^m(\cdot)$. The asterisk in the superscript $(\cdot)^*$ denotes the complex conjugate. The time-domain spherical harmonic expansion of the plane wave reads [18]

$$\delta \left(t - \frac{c}{\omega} (x, n_{pw}) \right) = \left\{ \begin{array}{ll} 0, & \left| \frac{c}{\omega} t \right| \leq 1 \\ 4\pi \sum_{n=0}^{\infty} \frac{c}{2\omega} P_n(\frac{c}{\omega} t) \sum_{m=-n}^{n} Y_{nm}(\theta, \phi) Y_{nm}^{*}(\frac{c}{\omega}, \Phi_{pw}), & \left| \frac{c}{\omega} t \right| > 1, \end{array} \right.$$

where $P_n(\cdot)$ denote the Legendre polynomials. The individual modes satisfy the Fourier transform relation

$$\mathcal{F}^{-1} \left\{ i^{-n} j_n(\frac{c}{\omega} r) \right\} = \left\{ \begin{array}{ll} \frac{c}{\omega} P_n(\frac{c}{\omega} t), & \left| \frac{c}{\omega} t \right| \leq 1 \\ 0, & \left| \frac{c}{\omega} t \right| > 1. \end{array} \right.$$

Eq. (6) constitutes the Legendre series expansion of the Dirac delta function [25, Ch. 18]. Please note that the symbol $P_n(\frac{c}{\omega} t)$ represents a windowed Legendre polynomial within $|\frac{c}{\omega} t| \leq 1$ in the remainder. The finite temporal support is thereby assumed, and the expression for $|\frac{c}{\omega} t| > 1$ is omitted.

The frequency-domain and time-domain spherical radial functions are depicted in Figs. 1(b) and 1(d), respectively. It can be seen that the spectra at high frequencies ($\frac{c}{\omega} r > n$) decay at the rate of –20 dB/decade (i.e., twice as steep as for the cylindrical radial functions). At $\omega = 0$, the zeroth-order radial function has 0 dB gain, whereas higher-order ($m \geq 1$) radial functions exhibit mth-order zero(s). The time-domain spherical radial functions have a finite temporal extent within $|t| < \frac{c}{\omega}$ and exhibit discontinuities at the edges $|t| = \frac{c}{\omega}$. Unlike the cylindrical case, the amplitude of the time-domain radial functions is always finite. Since even/odd-order radial functions are even/odd symmetric in
the time domain, the corresponding frequency-domain radial functions are purely real/imaginary.

1.3 Explicit Relation of the Radial Functions

In order to derive the relation of the cylindrical and spherical radial functions, the respective time-domain expansions [Eqs. (2) and (6)] are compared for $\theta = \frac{\pi}{2}$ (i.e., $\rho = r$). The order in the double sum Eq. (6) is exchanged,

$$\delta(t - \frac{1}{c}(x, n_{pw})) = 4\pi \sum_{m=-\infty}^{\infty} e^{im(\phi-\phi_{pw})} \sum_{n=|m|}^{\infty} \frac{c}{2r} P_{n}(\hat{r}t) Y_{nm}(\frac{\pi}{2}, 0) Y_{nm}^{*}(\frac{\pi}{2}, 0).$$

In Eq. (8), the relations $Y_{nm}(\frac{\pi}{2}, \phi) = Y_{nm}(\frac{\pi}{2}, 0)e^{im\phi}$ and $Y_{nm}^{*}(\frac{\pi}{2}, \phi_{pw}) = Y_{nm}(\frac{\pi}{2}, 0)e^{-im\phi_{pw}}$ were used, which follow from Eq. (5). Comparing the addends (mth term) of Eq. (8) with Eq. (2) yields

$$\frac{c}{\pi r} \sum_{m=|m|}^{\infty} \frac{c}{2r} \sum_{n=|m|}^{\infty} P_{n}(\hat{r}t) Y_{nm}(\frac{\pi}{2}, 0) Y_{nm}^{*}(\frac{\pi}{2}, 0) \text{ expression for cylindrical radial function}$$

$$= \frac{c}{\pi r} \sum_{m=|m|}^{\infty} \sum_{n=|m|}^{\infty} (2n + 1) \frac{c}{2r} P_{n}(\hat{r}t) K_{m}^{n}.$$

where Eq. (5) is exploited in the second equality. The coefficient K_{n}^{m} is defined as [27, Eq. (19)]

$$K_{n}^{m} = \frac{(n-m)!}{(n+m)!} [\mathcal{P}_{n}^{m}(0)]^{2}$$

Eqs. (11) and (17) express the cylindrical radial functions as a linear combination of the spherical radial functions $(n \geq |m|)$ in the respective domain. Since the mth cylindrical radial function exhibits $|n|$th-order zeros at $\omega = 0$ [cf. Fig. 1(a)], the lowest spherical radial function order used in the approximation is $n = |m|$, which exhibits the same order of zeros at $\omega = 0$. Lower-order ($n < |m|$) spherical radial functions are not used. Note from Eq. (13) that K_{n}^{m} is nonzero only if $n + m$ is even (i.e., both n and m are either even or odd integers). This means that Eq. (11) or Eq. (17) expresses an even/odd-order cylindrical radial function with even/odd-order spherical radial functions. Recall from Figs. 1(c) and 1(d) that the time-domain radial function are
1.4 Approximation

For practical usage, the explicit expression Eq. (11) has to be truncated to a finite sum,

$$\frac{c}{\pi r} \frac{\text{T}_m(\frac{\omega}{c}r)}{\sqrt{1 - (\frac{\omega}{c}r)^2}} \approx \frac{c}{2\pi} \sum_{n=|m|}^{N} W_n \cdot (2n + 1) P_n(\frac{\omega}{c}r) K_n^m,$$

(18)

where N denotes the maximum spherical harmonic order. This is considered as the approximation of the cylindrical radial functions in terms of the spherical radial functions. The number of nonzero terms in Eq. (18) is $\lceil \frac{2N + |m| + 1}{r} \rceil$ with $\lceil \cdot \rceil$ denoting the ceiling function. In order to mitigate the effect of hard modal truncation, a window W_n is introduced for modal smoothing. This paper uses the right half of the Kaiser-Bessel window, whose shape is conveniently parameterizable [29]. The individual modal weights are expressed as

$$W_n = \frac{I_0(\beta \sqrt{1 - (\frac{n-|m|}{N-|m|})^2})}{I_0(\beta)},$$

(19)

where $n = |m|, |m| + 2, \ldots, N$ and $I_0(\cdot)$ denotes the zeroth-order modified Bessel function. The parameter $\beta \geq 0$ determines the shape of the modal window with $\beta = 0$ corresponding to the rectangular window.

The approximated cylindrical radial functions are depicted in Fig. 2. The frequency-domain approximations without modal smoothing ($\beta = 0$) are shown in Fig. 2(a). It can be seen that the spectra are accurate for $\frac{\omega}{c}r < N$ and the spectral deviation (indicated by black curves) is mainly found at high frequencies ($\frac{\omega}{c}r > N$). The effect of using a modal window ($\beta = 4$) in the frequency domain is illustrated in Fig. 2(b). Although the spectral deviations are distributed throughout a wider frequency range, the magnitude spectrum (gray) is more accurately approximated. Fig. 2(c) shows the time-domain radial functions without modal windowing ($\beta = 0$). The time-domain deviations exhibit strong oscillatory behavior, which agrees with the steep high-pass filtered characteristic of their spectra [cf. the spectral deviations depicted in Fig. 2(a)]. This is moderated by the modal weighting ($\beta = 4$) as shown in Fig. 2(d). The approximation using the modal smoothing is qualitatively similar to the original radial functions [cf. Fig. 1(c)].

2 RADIAL FILTER DESIGN

This section discusses the discrete-time modeling of the cylindrical and spherical radial functions. Since the time-domain radial functions are of finite length [cf. Figs. 1(c) and 1(d)], it appears reasonable to realize them as FIR filters. A direct sampling of the time-domain radial functions, however, leads to a poor modeling accuracy. This is because of the infinite bandwidth of the radial functions as depicted in Figs. 1(a) and 1(b). Sampling these functions in the time domain inevitably causes spectral aliasing. For the spherical radial filters, the resulting aliasing artifacts have been investigated in [19]. A spherical radial filter design with reduced aliasing was recently presented in [20, 21].

The time-domain sampling of the cylindrical radial filters gives rise to more severe aliasing. This is mainly because of the slower decay of the high-frequency spectrum as shown in Fig. 1(a). Fig. 3 depicts the artifacts that result from time-domain sampling. Because of the diverging amplitude around $|t| = \frac{T_s}{c}$, the energy of the cylindrical radial functions is overestimated or underestimated depending on the fractional part of $\frac{\omega}{c}r$ [cf. Fig. 3(a)], with $T_s := \frac{1}{f_s}$ denoting the sampling period. Moreover, since the temporal extent of the radial functions is not properly modeled, the notch frequencies do not match with the original spectrum [cf. Fig. 3(b)]. This problem was reported in [22], where the cylindrical radial filters were used for the WFS driving functions. In order to reduce the spectral deviations, a heuristically chosen nonlinear amplitude mapping was applied to the time-domain radial functions.

This article proposes an improved cylindrical radial filter design that combines the approximation presented in Sec. 1.4 and the spherical radial filter design method introduced in [21]. Sec. 2 briefly introduces the design of spherical filters with reduced aliasing. The proposed cylindrical radial filters are constructed by linearly combining these spherical radial filters (Sec. 2.2). The validity of this approach is demonstrated by numerical results.
2.1 Spherical Radial Filter Design

This section reviews a recent spherical radial filter design method [21]. The spectral aliasing resulting from time-domain sampling is reduced by applying an analytical low-pass filter to the radial functions. The FIR coefficients of the radial filters are then obtained by sampling the low-pass filtered expressions. Because of the attenuation of the spectral components beyond the base band (i.e., \(|f| > \frac{f_s}{2}\)), the resulting filters exhibit reduced aliasing artifacts. The original idea of the analytical band limitation is primarily introduced for the digital emulation of analog synthesizer sounds, such as triangular, rectangular, and sawtooth waves [30–33]. Only the zeroth-order and first-order discontinuities have been of interest in these applications. This approach has also been employed for modeling nonlinear analog systems like hard/soft clipping [34–36], where the aliasing artifacts were reduced by applying a band limitation to the first-order and second-order discontinuities. The band limitation of higher-order discontinuities was presented in [21, 37], which was employed for the design of spherical radial filters. Please refer to [21] for a more comprehensive treatment of this approach.

First, the zeroth-order case is considered where the time-domain radial function is a rectangular pulse [cf. Fig. 1(d)]. It can be expressed as

\[
P_0(\xi t) = u(t + \xi) - u(t - \xi) = \int_{-\infty}^{t'} \left[\delta(t' + \xi) - \delta(t' - \xi)\right] dt',
\]

with \(u(\cdot)\) denoting the Heaviside step function. Recall that \(P_n(\cdot)\) is a windowed Legendre polynomial. The amplitude \(\frac{\pi}{\xi}\) is dropped here for brevity. In the second equality, each unit step function is expressed as an integral of a shifted Dirac delta function \(\delta(t \pm \xi)\). In order to reduce the spectral components at high frequencies, Eq. (21) is convolved (denoted by \(\ast\)) with the impulse response \(h(t)\) of a low pass filter, yielding

\[
h(t) \ast P_0(\xi t) = \int_{-\infty}^{t} \left[h(t' + \xi) - h(t' - \xi) \right] dt' = H_0(t + \xi) - H_0(t - \xi),
\]

where \(H_0(t)\) denotes the antiderivative of \(h(t)\),

\[
H_0(t) := \int_{-\infty}^{t} h(t') dt'.
\]

The latter is called the band-limited step function in the literature, cf. [31].

The impulse response of an ideal anti-aliasing filter is the sinc function \(h^{(\text{sinc})}(t) = \text{sinc}(f_s \cdot t) = \frac{\sin(\pi f_s t)}{\pi f_s t}\). The corresponding band-limited step function reads [25, Eq. (6.2.10); 33, Eq. (10)]

\[
H_0^{(\text{sinc})}(t) = \int_{-\infty}^{t} \text{sinc}(f_s \cdot t') dt' = \frac{1}{2} + \frac{1}{\pi} \text{Si}(\pi f_s t),
\]

where \(\text{Si}(\cdot)\) denotes the sine integral function. Figs. 4(a) and 4(b) depicts the zeroth-order radial function before and after an ideal band limitation. Because of the ideal low-pass filtering, the band-limited radial filter exhibits infinitely long temporal extent.

Next, the first-order case \((n = 1)\) is considered, where the time-domain radial function is described by a linear function within \(|t| < \xi\). Note from Fig. 1(d) that not only the signal but also its derivative are discontinuous at \(|t| = \xi\). The first-order radial function is thus expressed as

\[
P_1(\xi t) = -u(t + \xi) + u(t - \xi) + \xi \cdot (u(t + \xi) - u(t - \xi)).
\]

The zeroth-order discontinuities are described by \(u(t \pm \xi)\), and the first-order discontinuities by the ramp functions \((t \pm \xi) \cdot u(t \pm \xi)\). The scaling factor \(\frac{\pi}{\xi}\) represents the magnitude of the first-order discontinuities. Again, the amplitude \(\frac{\pi}{\xi}\) is omitted for brevity. Since the ramp function can be expressed as the second-order antiderivative of \(\delta(t)\),

\[
(t \pm \xi) \cdot u(t \pm \xi) = \int_{-\infty}^{t} \left(\int_{-\infty}^{t'} \delta(t'' \pm \xi) dt'' \right) dt',
\]

Eq. (26) can be rewritten as

\[
P_1(\xi t) = \int_{-\infty}^{t} \left[-\delta(t + \xi) - \delta(t - \xi) \right] dt' + \xi \int_{-\infty}^{t} \left(\int_{-\infty}^{t'} \left[\delta(t'' + \xi) - \delta(t'' - \xi) \right] dt'' \right) dt'.
\]

Analogous to the zeroth-order case, a band limitation is applied by replacing the Dirac delta functions \(\delta(t)\) with \(h(t)\) (i.e., applying a low-pass filter),

\[
h(t) \ast P_1(\xi t) = -H_0(t + \xi) + H_0(t - \xi) + \xi \left[H_1(t + \xi) - H_1(t - \xi) \right],
\]

where the so-called band-limited ramp function \(H_1(t)\) corresponds to the second-order antiderivative of \(h(t)\),

\[
H_1(t) := \int_{-\infty}^{t} \left(\int_{-\infty}^{t'} h(t'') dt'' \right) dt'.
\]
This approach can be generalized to arbitrary orders n, where the radial function is represented as a superposition of higher-order discontinuities \cite{21, Eq. (27)}:

$$
P_n(\xi t) = \sum_{k=0}^{n} b_n(k) \frac{(n+k)!}{(n-k)!k!2^k} \times \left[(-1)^{n-k}(t+\xi)^k u(t+\xi) - (t-\xi)^k u(t-\xi) \right].$$

(31)

where

$$
b_n(k) = \frac{(n+k)!}{(n-k)!k!2^k}.
$$

(32)

The kth-order discontinuities are described by $\frac{1}{k!}(t \pm \xi)^k \cdot u(t \pm \xi)$, which corresponds to the kth-order antiderivative of $\delta(t \pm \xi)$. A band limitation is performed by replacing $\frac{1}{k!}(t \pm \xi)^k \cdot u(t \pm \xi)$ with the kth-order antiderivative of the prototype filter $h(t)$, which can be derived by successive integration,

$$
H_k(t) = \int_{-\infty}^{t} H_{k-1}(t')dt'.
$$

(33)

The expression for the band-limited radial functions thus reads \cite{21, Eq. (37)}

$$
h(t) \ast P_n(\xi t)
= \sum_{k=0}^{n} b_n(k)(\xi)^k \left[(-1)^{n-k} H_k(t + \xi) - H_k(t - \xi) \right].
$$

(34)

Note that this is a continuous-time representation fully describing the time-domain behavior of the low-pass filtered radial functions. Because of its smoother transients, Eq. (34) can be sampled with reduced aliasing artifacts.

The spectral and temporal properties of the resulting radial filters highly depend on the prototype filter $h(t)$. Because of the uncertainty principle in signal processing, known as the Gabor principle \cite{38}, there is a trade-off between band limitation and temporal compactness. In general, longer impulse responses are likely to achieve stronger stop-band attenuation and thus less aliasing. The sinc kernel, for instance, constitutes an ideal low-pass filter, which is achieved at the cost of an infinite temporal extent [Fig. 4 (b)] and is therefore of limited practical interest. It is thus attempted to reduce the aliasing artifacts as much as possible while keeping the radial filters to a reasonable length. As will be demonstrated in the following, the compact temporal property of the radial filters can be maintained at the expense of moderate spectral deviations at high frequencies.

The authors have shown in \cite{21, 37} that the prototype filters based on the Lagrange kernels meet the above criteria. Since the impulse response of a Lagrange kernel is described by polynomials, the antiderivatives $H_k(t)$ can be derived in closed form. In this study, odd-order Lagrange polynomials are considered, which are known to be superior to even orders in terms of stop-band attenuation \cite{39, Sec. 5.3}. The polynomial order is denoted by M. The Lagrange kernel is a continuous function defined within $M+1$ intervals of equal lengths T_s. The intervals are defined by $M+2$ nodal points, which are equally distributed with respect to $t = 0$,

$$
t = -\frac{M+1}{2}, -\frac{M-1}{2}, \ldots, \frac{M+1}{2}.
$$

(35)

For the μth interval ($\mu = 0, 1, \ldots, M$),

$$
t \in [-\frac{M+1}{2} + \mu, -\frac{M+1}{2} + \mu + 1),
$$

(36)

the impulse response is expressed as an Mth-order polynomial \cite{40},

$$
h(t) = \prod_{v=0,v \neq M-\mu}^{M}(\frac{t - (\mu + 1)v}{M - \mu} - \mu - v).
$$

(37)

Outside these intervals ($|t| > \frac{M+1}{2}$), the impulse response is zero, thus constituting a (continuous-time) FIR filter. Fig. 5 exemplarily depicts Lagrange kernels of different orders M.

The antiderivatives $H_k(t)$ are obtained by successively integrating $h(t)$ [cf. Eqs. (24) and (33)]. The integration constants have to be chosen in such a way that the resulting...
Fig. 7. The impulse responses of the proposed cylindrical radial filters (radius $r = 0.5 \text{m}$, sampling rate $f_s = 48 \text{kHz}$, fifth-order Lagrange kernel). The circles indicate the finite impulse response (FIR) coefficients (145 samples).

$H_k(t)$ is continuous at the nodes. The following also have to be fulfilled beyond the outermost nodes,

$$H_k(t) = 0, \quad \frac{t}{T_s} < -\frac{M+1}{2}, \quad (38)$$

$$H_k(t) = \frac{t^k}{k!}, \quad \frac{t}{T_s} > -\frac{M+1}{2}. \quad (39)$$

As discussed in [21], these conditions can be satisfied only for $k \leq M$. The maximum antiderivative order (denoted by K) is thus limited by the polynomial order $K \leq M$. This implies that higher-order discontinuities have to be coped with by higher-order Lagrange kernels. This in turn increases the number of intervals and the length of the Lagrange kernel ($M+1 \cdot T_s$).

The higher-order antiderivatives $H_k(t)$ of the prototype filter are depicted in Fig. 6. The bottom row shows the difference between the full-band and band-limited discontinuities,

$$D_k(t) := H_k(t) - \frac{t^k}{k!} u(t), \quad (40)$$

which are referred to as the residual functions [32]. It is worth noting that the residual functions are also described by piecewise polynomials between the nodal points.

The following expression is useful for practical implementations,

$$h(t) \ast P_n(\xi t) = P_n(\xi t)$$

$$+ \sum_{k=0}^{n} b_n(k)(\xi t)^k \left[(-1)^{n-k} D_k(t + \frac{\xi}{\xi t}) - D_k(t - \frac{\xi}{\xi t}) \right], \quad (41)$$

which states that the band limitation can be carried out by superposing the scaled and delayed residuals $D_k(t)$ onto the original time-domain radial function $P_n(\xi t)$ around the discontinuities at $|t| = \frac{\xi}{\xi t}$. It is worth noting that the superposition may be performed in the discrete-time domain where the samples in the neighborhood of the discontinuities are updated according to the sampled residual functions. The zeroth-order spherical radial filter based on the Lagrange kernel is shown in Fig. 4 (c). Unlike the sinc kernel case, the radial filter has a finite length.

2.2 Cylindrical Radial Filter Design

The band limitation approach presented in Sec. 2.1 cannot be directly applied to cylindrical radial functions because the discontinuities at $|r| = \frac{\xi}{\xi t}$ are of infinite magnitude. The approximation Eq. (18) is employed to circumvent this problem. A low-pass–filtered cylindrical radial function is described by linearly combining the band-limited spherical radial functions Eq. (34),

$$h(t) \ast \frac{c}{\pi r} \frac{T_m(\xi t)}{\sqrt{1 - (\frac{\xi t}{r})^2}}$$

$$\approx \frac{c}{2r} \sum_{n=|m|}^{N} W_n \cdot (2n+1)K_n^m$$

$$\times \sum_{k=0}^{n} b_n(k)(\xi t)^k \left[(-1)^{n-k} H_k(t + \frac{\xi}{\xi t}) - H_k(t - \frac{\xi}{\xi t}) \right]. \quad (42)$$

The FIR coefficients for the cylindrical radial filters are obtained by sampling the analytical time-domain expressions. The sampling frequency is set to $f_s = 48 \text{kHz}$. The impulse responses of the proposed cylindrical radial filters are shown in Fig. 7. It can be seen that the components around $|r| = \frac{\xi}{\xi t}$ are updated, which corresponds to the residual functions $D_k(t \pm \frac{\xi}{\xi t})$. The overshoot/undershoot is attributed to the transient properties of the Lagrange kernel.

The design accuracy of the cylindrical radial filters is evaluated in terms of spectral deviation defined as

$$E_m(\omega) := |\tilde{H}_m(\omega) - \hat{H}_m(\omega)|, \quad (43)$$

where $\hat{H}_m(\omega)$ denotes the spectrum of the cylindrical radial filter and $\hat{H}_m(\omega)$ the original cylindrical radial function $i^{-m} J_m(\frac{\omega}{\omega t})$. Fig. 8 depicts $\hat{H}_m(\omega)$ in gray and $E_m(\omega)$ in black. Three different radial filter design methods are compared:

- Fig. 8(a): Sampling of the time-domain cylindrical radial functions Eq. (3). The FIR length is 139 samples. The aliasing artifacts dominate the high-frequency spectrum. For even $m \geq 2$, the radial filter fails to model the mth-order zeros at $\omega = 0$, resulting in strong spectral deviation at low frequencies. Odd-order radial filters exhibit better accuracy at low frequencies benefiting from the odd symmetry (first-order zero at $\omega = 0$) of the FIR coefficients.
- Fig. 8(b): Sampling of the approximation Eq. (18). The FIR length is 139 samples. In comparison with Fig. 8(a), slight improvements are observed below
Fig. 8. Modal spectra of the cylindrical radial functions (radius $r = 0.5$ m, sampling rate $f_s = 48$ kHz).

![Modal spectra of the cylindrical radial functions](image)

10 kHz. The spectral deviation is however increased in the neighborhood of $\frac{f_s}{2}$.

- Fig. 8(c): Sampling of the band-limited approximation Eq. (42). The band limitation is performed by using the fifth-order Lagrange kernel. This modifies six samples around each discontinuity (three on each side of the discontinuity). The FIR length is 145 samples. The spectral deviation is reduced in the entire frequency range. In particular, the improvements at low frequencies are considerable. The high-frequency spectrum of the cylindrical radial filter exhibits a roll-off, which is attributed to the non-ideal low-pass filter characteristics of the Lagrange kernel.

The accuracy of the cylindrical radial filters is further examined in terms of normalized squared error (NSE),

$$\text{NSE}_m := 10 \log_{10} \left(\frac{\sum_l |E_m(\omega_l)|^2}{\sum_l |H_m(\omega_l)|^2} \right),$$

(44)

where ω_l are 2^{16} uniformly sampled frequencies within the Nyquist limit ($-\pi f_s < \omega_l \leq \pi f_s$). Fig. 9 shows the NSE for varying approximation order N and radius r. The results for the sampled cylindrical radial functions are shown for comparison (indicated by black squares). As expected, the accuracy of the radial filter improves as the approximation order N increases. Including more spherical radial filters is more effective for higher m. For $r = 0.5$ m, doubling N from 15 to 30 reduces the NSE by 6.9 dB for $m = 0$ and by 11.2 dB for $m = 15$. The two subfigures demonstrate that the design accuracy largely depends on the radius r, which determines the spectral components beyond the base band $|f| > \frac{f_s}{2}$ and thus has a direct impact on the resulting aliasing artifacts. As r gets larger, higher N is required to achieve a comparable result. If N is too small, the proposed method might be inferior to a direct sampling of the cylindrical radial functions (e.g., choosing $N = 15$ for $r = 0.5$ m and $m = 13, 14, 15$).

3 LOCAL WAVE FIELD SYNTHESIS

The cylindrical radial filters designed in Sec. 2 can be used to model sound fields represented by cylindri-
The theory of WFS is based on the high-frequency/far-field approximation of the Kirchhoff-Helmholtz integral equation [43]. The WFS driving function for the loudspeaker positioned at $x_0 = (r_0, r_0 \sin \phi_0, 0)^T$ is given as the directional gradient of the desired sound field with respect to the unit vector $n_0 = (\cos \phi_0, \sin \phi_0, 0)^T$, which is normal to the array contour and points inward the listening area. Note that x_0 and n_0 are defined with different azimuth angles, ϕ_0 and ϕ_{n_0}, respectively. The driving function for a plane wave reads [44, Sec. 2.4]

$$d_{\text{WFS}}(x_0, t) = \left[\sqrt{8\pi \|x_0 - x_{\text{ref}}\|} \max \{n_0, n_{\text{pw}}\}, 0 \right] \delta \left(t - \frac{\omega}{c} \cos(\phi_0 - \phi_{\text{pw}}) \right) * h_{\text{pre}}(t),$$

(45)

where $h_{\text{pre}}(t)$ denotes the so-called pre-equalization filter whose spectrum is $\sqrt{\omega_0/c}$ ($+10$ dB/decade and $+45^\circ$ phase shift). The Dirac delta function $\delta \left(t - \frac{\omega}{c} \cos(\phi_0 - \phi_{\text{pw}}) \right)$ represents the sound field of the virtual plane wave evaluated at the loudspeaker position x_0. Eq. (45) constitutes a driving function for 2.5-dimensional WFS where a three-dimensional sound field is synthesized by a loudspeaker array distributed on a two-dimensional plane (e.g., circular and rectangular arrays). In such a 2.5-dimensional configuration, the desired sound field can be synthesized with a correct amplitude only on a pre-defined reference line. In order to keep the presented approach as straightforward as possible, the authors avoid explicitly defining a reference line $x_{\text{ref}}(x_0)$. Instead, a reference point x_{ref} is chosen at which the synthesized sound field should exhibit the correct amplitude. The amplitude correction is performed by the term $\sqrt{\|x_0 - x_{\text{ref}}\|}$ in Eq. (45). The spatial window $\max \{\langle n_0, n_{\text{pw}} \rangle, 0 \}$ is a rectified cosine function whose maximum is unity at $\phi_{n_0} = \phi_{\text{pw}}$. The readers are referred to [45, 46] for a comprehensive treatment of WFS.

In practical systems where real loudspeakers are placed with finite spacing, the synthesized sound field suffers from spatial aliasing artifacts, which predominantly occur above the so-called spatial aliasing frequency. The spatial aliasing introduces spectral fluctuations at high frequencies with an approximate slope of $+10$ dB/decade. The frequency response of the pre-equalization filter thus needs to be adjusted so that the slope of $+10$ dB/decade is flattened out above the spatial aliasing frequency [47, 48].

In local WFS (LWFS), the accuracy of the synthesized sound field is improved within a small pre-defined region, which typically comes at the cost of stronger spatial aliasing artifacts elsewhere. A number of LWFS approaches have been proposed so far [49–51]. This section considers the LWFS based on spatial band limitation [51], where the desired sound field is expanded with respect to a reference point in the spherical or cylindrical harmonic domain. The local accuracy of the synthesized sound field is improved by applying a modal band limitation. The size of the local sound field scales with the maximum harmonic order. This idea was first introduced for higher-order Ambisonics [52] and later employed in WFS [51]. The LWFS driving functions were initially derived in the frequency domain [51]. Different versions of time-domain driving functions have been presented subsequently [22, 27, 53].

In order to derive the LWFS driving function for a virtual plane wave, a spatial band limitation is applied to the time-domain cylindrical harmonic expansion Eq. (2). The spatially band-limited plane wave is described by a trun-
cated sum,
\[s_M(x, t) = \sum_{m=-M}^{M} \frac{c}{\pi R^2} \frac{T_m(\xi t)}{1 - (\xi t)^2} e^{im(\phi - \phi_{pw})} \]
\[= \frac{1}{2\pi} \int_0^{2\pi} \left[\sum_{m=-M}^{M} e^{im(\phi - \phi_{pw})} \delta \left(t - \frac{c}{\xi} \cos(\phi - \phi) \right) \right] d\phi, \]
(46)
(47)

where \(M \) denotes the spatial bandwidth. The sound field on the horizontal plane (\(\theta = \frac{\pi}{2} \)) is considered. The second equality Eq. (47) converts the truncated cylindrical harmonic expansion to a plane wave expansion where the sound field is represented as a superposition of an infinite number of plane waves \(\delta \left(t - \frac{c}{\xi} \cos(\phi - \phi) \right) \) with \(\phi \in [0, 2\pi) \). The integration variable \(\phi \) denotes the azimuth angle of each plane wave direction \(\phi = (\cos\bar{\phi}, \sin\bar{\phi})^T \). The truncated Fourier series \(\sum_{m=-M}^{M} e^{im(\phi - \phi_{pw})} \) represents the corresponding amplitude.

The time-domain LWFS driving function is derived by applying the conventional driving function Eq. (45) to the individual plane waves (azimuth \(\bar{\phi} \)), which compose the spatially band-limited version of the original plane wave (azimuth \(\phi_{pw} \)) Eq. (47), yielding
\[d_{LWFS}(x', t) = \sqrt{8\pi r_0} \cdot h_{pre}(t) \]
\[* \frac{1}{2\pi} \int_0^{2\pi} \left[\left(\sum_{m=-M}^{M} e^{im(\bar{\phi} - \phi_{pw})} \right) \left(\sum_{m=-M}^{M} \hat{a}_m(\phi_{nw}) e^{im\bar{\phi}} \right) \right] \delta \left(t - \frac{c}{\xi} \cos(\phi_{nw} - \bar{\phi}) \right) d\bar{\phi}, \]
(48)

where the primed variables represent the translated coordinates \(x'_0 = (r_0^l \cos\phi_0^l, r_0^l \sin\phi_0^l)^T \) defined as \(x'_0 = x_0 - x_{ref} \). Since the reference point is always the expansion center (i.e., the origin of the translated coordinate system), the amplitude correction term simplifies to \(\sqrt{8\pi \|x_0 - x_{ref}\|} = \sqrt{8\pi \|x'_0\|} = \sqrt{8\pi r_0^l} \). Note that the pre-equalization filter \(h_{pre}(t) \) is unchanged. The second sum in Eq. (48) represents the spatial window approximated by a truncated Fourier series with respect to \(\bar{\phi} \) [27, Eqs. (9) and (10)],
\[\max \{m_n, n_n\} \approx \sum_{m=-M_a}^{M_a} \hat{a}_m(\phi_{nw}) e^{im\bar{\phi}}, \]
(49)

where the maximum order is denoted by \(M_a \). The expansion coefficients \(\hat{a}_m(\phi_{nw}) \) are given as
\[\hat{a}_m(\phi_{nw}) = \begin{cases} \frac{(-1)^{m/2}}{\pi (\xi t)^2} e^{-im\phi_{nw}}, & m \text{ even} \\ \frac{1}{2i} e^{-im\phi_{nw}}, & m = \pm 1 \\ 0, & \text{otherwise}. \end{cases} \]
(50)

In Eq. (48), the spatial windowing of each plane wave is carried out in the angular domain (\(\bar{\phi} \)) by multiplying the truncated expansion of the spatial window Eq. (49) and the plane wave amplitude represented by the plane wave expansion Eq. (47). The driving function can be expressed in terms of the spatially windowed plane wave represented by a single sum,
\[d_{LWFS}(x', t) = \sqrt{8\pi r_0} \cdot h_{pre}(t) \]
\[* \frac{1}{2\pi} \int_0^{2\pi} \left[\sum_{m=-M}^{M} \hat{a}_m(\phi_{pw}, \phi_{nw}) e^{im\phi_{nw}} \right] d\phi. \]
(51)

The coefficient \(\hat{a}_m \) is the convolution of the respective coefficients in the Fourier-series domain (denoted by *\(m \)),
\[\hat{a}_m(\phi_{pw}, \phi_{nw}) = e^{-im\phi_{pw}} *_{m} \hat{a}_m(\phi_{nw}). \]
(52)

The arguments \((\phi_{pw}, \phi_{nw}) \) of \(\hat{a}_m \) are omitted in Eq. (51) for brevity. The maximum order \(M \) of the driving function is the sum of the modal bandwidth describing the sound field Eq. (47) and the truncation order of the spatial window Eq. (49), i.e., \(M = M_t + M_a \).

The final expression for the LWFS driving function is obtained by converting the plane wave expansion back to a cylindrical harmonic expansion,
\[d_{LWFS}(x', t) = c \sqrt{8\pi r_0} \cdot h_{pre}(t) * \sum_{m=-M}^{M} \hat{a}_m(\phi_{nw}) \frac{T_m(\bar{r}_0 t)}{\sqrt{1 - (\bar{r}_0 t)^2}} e^{im\phi_{nw}}. \]
(53)

Eq. (53) is derived by first exchanging the order of the summation and integral in Eq. (51) and then using
\[\frac{1}{2\pi} \int_0^{2\pi} e^{im\phi}(t - \frac{c}{\xi} \cos(\phi_{nw} - \bar{\phi})) d\phi \]
\[= \frac{1}{2\pi} \int_0^{2\pi} \left[\sum_{l=-\infty}^{\infty} \frac{c}{\pi r_0^l} \frac{T_l(\bar{r}_0 t)}{\sqrt{1 - (\bar{r}_0 t)^2}} e^{i(l\phi_{nw} - \bar{\phi})} \right] d\bar{\phi} \]
\[= \sum_{l=-\infty}^{\infty} \frac{c}{\pi r_0^l} \frac{T_l(\bar{r}_0 t)}{\sqrt{1 - (\bar{r}_0 t)^2}} \int_0^{2\pi} e^{i(l\phi_{nw} - \bar{\phi})} d\bar{\phi} \]
\[= \frac{c}{\pi r_0^l} \frac{T_m(\bar{r}_0 t)}{\sqrt{1 - (\bar{r}_0 t)^2}} e^{im\phi_{nw}}, \]
(54)
PAPERS CYLINDRICAL RADIAL FILTERS

Fig. 10. Local wave field synthesis (LWFS) of a plane wave impulse propagating in the direction $\mathbf{n}_{pw} = (0, -1, 0)^T$. Sixty monopole loudspeakers are placed on a circle with radius $r = 1.5$ m. The snapshots are taken 1 ms before the planar wavefront passes the reference point x_{ref} indicated by ‘+’. The logarithmic amplitude of the sound field is depicted according to the colormap shown on the right. The dynamic range of the displayed data is 70 dB, where the levels below -65 dB and above $+5$ dB are clipped.

Equations Eq. (53) are implemented, and the synthesized sound fields are investigated by means of numerical simulation. The virtual plane wave is assumed to propagate in the $-y$ direction (i.e., $\mathbf{n}_{pw} = (0, -1, 0)^T$), is considered. A circular loudspeaker array, which has the radius of 1.5 m and consists of 60 ideal monopole sources, is considered. An ideal free-field condition is assumed. The cylindrical radial filters in Eq. (53) are realized according to the approach presented in Sec. 2.2. The sampling frequency is set to $f_s = 48$ kHz. The 15th-order Lagrange kernel is used for the temporal bandwidth limitation (i.e., anti-alias filtering). The Kaiser-Bessel window ($\beta = 4$) was used for the approximation Eq. (42). Four different reference points are chosen:

- Center: $(0, 0, 0)^T$
- Right: $(0.75, 0, 0)^T$
- Front: $(0, 0.75, 0)^T$
- Back: $(0, -0.75, 0)^T$

The driving function Eq. (53) iscomputed for translated coordinate systems where the reference points coincide with the origin. The cylindrical harmonic expansion

Fig. 11. The frequency responses of the synthesized sound field on (black) and off (gray) target positions. The cylindrical radial functions appearing in the local wave field synthesis (LWFS) driving functions Eq. (53) are realized by (a) the proposed band-limited design (based on 15th-order Lagrange kernel) and (b) the conventional design where the time-domain approximation Eq. (18) is sampled without band limitation. The off-target positions lie on a circle with radius 0.085 m centered at the respective reference point x_{ref}. The frequency responses are evaluated for 20 equiangular positions.

J. Audio Eng. Soc., Vol. 70, No. 6, 2022 June
of the sound field is limited to $M_z = 15$, and the spatial window Eq. (49) is expanded by the Fourier series up to $M_a = 20$. The modal bandwidth of the driving function is thus $M = M_z + M_a = 35$. The maximum spherical harmonic order N for the approximation Eq. (18) is set to $N = 30$. The pre-equalization filter $h_{pre}(t)$ is realized as a linear phase FIR filter (257 taps). The phase response ($\pm 45^\circ$) of the ideal pre-equalization filter ($\sqrt{\omega/c}$) is omitted for convenience.

The synthesized sound fields are shown in Fig. 10. Those are the snapshots 1 ms before the arrival of the plane wave at the reference point (corresponding to a propagation distance of 0.343 m). For a better visualization of the spatial structure, the driving functions are driven with a low-pass filtered impulse (sixth-order Butterworth filter with cut-off frequency at 5 kHz). It can be seen that, in addition to the original plane wave, small spatio-temporal components arise from different azimuth angles, which is attributed to the spatial band limitation. Irrespective of the reference point, the spatial structure of the synthesized sound field is very similar.

The frequency responses of the synthesized sound fields are depicted in Fig. 11. The cylindrical radial filters are implemented based on the approximation Eq. (18), where the Kaiser-Bessel window ($\beta = 4$) is used for modal smoothing. The results with and without band-limitation (anti-aliasing) are shown in Figs. 11(a) and 11(b), respectively. The proposed method achieves a flat frequency response from 100 Hz to 1 kHz, whereas the conventional method (without band limitation) results in a spectral slope that varies with the reference point. Low-frequency roll-offs are observed in all cases, which is because of the finite spatial extent of the loudspeaker array. Since WFS is based on the high-frequency approximation of the Kirchhoff-Helmholtz integral equation, the synthesized sound fields commonly exhibit spectral deviations in low frequencies where the wavelength is larger than the overall size of the array [48]. The thin gray lines show the frequency responses evaluated on a circle (radius 85 mm) centered at each x_{ref}. These show the spectral variability of the sound field at off-target positions, which is influenced by the spatial band limitation and the spatial aliasing artifacts.

4 CONCLUSION

This paper presented a time-domain design of the cylindrical radial filters where the radial and frequency dependencies of cylindrical harmonic expansions are modeled by FIR filters. It was shown that a straightforward time-domain sampling of the cylindrical radial functions inevitably causes severe aliasing artifacts in the frequency domain. This is attributed to the discontinuities of the time-domain cylindrical radial functions, which exhibit an infinite bandwidth. Since the discontinuities are unbounded, it is not trivial to apply a band limitation.

In order to circumvent this problem, an approximation of the cylindrical radial functions, which is expressed as a linear combination of the spherical radial functions, was exploited. Since a band-limited design is known for the spherical radial filters, the cylindrical radial filters are constructed by combining the spherical radial filters with reduced aliasing artifacts. The improved accuracy of the proposed cylindrical radial filters was demonstrated by examining the spectral deviations and normalized squared errors. The cylindrical radial filters were used to implement the local wave field synthesis based on spatial band limitation. The synthesized sound fields were shown to benefit from the improved radial filter design.

The presented approach is expected to be used in other spatial signal processing tasks where cylindrical configurations are under consideration or a two-dimensional model (e.g., height invariance) of the sound field appears appropriate. This includes not only the numerical simulation of acoustic fields but also applications such as sound field analysis, sound field control, and active noise cancellation, where a discrete-time model of the sound field has to be plugged in to the respective algorithm.

5 REFERENCES

B978-0-12-753960-7.X5000-1.
10.1007/978-3-642-25743-8.
[10] S. Spors, V. Kuscher, and J. Ahrens, “Efficient Realization of Model-Based Rendering for 2.5-Dimensional Near-Field Compensated Higher Order Am-

J. Audio Eng. Soc., Vol. 70, No. 6, 2022 June

THE AUTHORS

Nara Hahn received his B.Sc. degree in Physics and M.Sc. degree in Electrical Engineering from the Seoul National University (Republic of Korea) in 2003 and 2010, respectively. He worked as a research assistant at the University of Rostock (Germany) from 2013 to 2020. In 2020, he was a senior researcher at the Chalmers University of Technology in Gothenburg, Sweden. Nara joined the Institute of Sound and Vibration Research at the University of Southampton as a research fellow in 2022. His main research interests are spatial sound capturing and reproduction using microphone and loudspeaker arrays.

Frank Schultz received a M.Sc. degree from TU Berlin, Germany and Dr.-Ing. degree with distinction from the University of Rostock, Germany, in 2011 and 2016, respectively. Within postdoctoral research, he worked with the Audio Communication Group at TU Berlin and Institute of Electronic Music and Acoustics in Graz, Austria. From 2003 to 2007, he worked in R&D at Bosch Communications Systems, Straubing, Germany, and from 2016 to 2018, he worked at sonible GmbH, Graz. His recent research interests are acoustic signal processing for and perceptual evaluation of different sound production methods.

Sascha Spors is a Professor and heads the group for Signal Theory and Digital Signal Processing at the Institute of Communications Engineering, Universität Rostock. From 2005 to 2012, he was heading the audio technology group at the Quality and Usability Lab, Deutsche Telekom Laboratories, Technische Universität Berlin, as a senior research scientist. From the Electrical, Electronic and Communication Engineering Faculty of the University Erlangen-Nuremberg, he obtained his Doctoral Degree (Dr.-Ing.) with distinction in January 2006, as a result of his work as a research scientist at the Chair of Multimedia Communications and Signal Processing. The topic of his doctoral thesis was the active compensation of the listening room characteristics for sound reproduction systems. During his thesis work from 2001 to 2006, he conducted research on wavefield analysis, wavefield synthesis, and massive multichannel adaptation problems. Sascha Spors is a member of the IEEE Signal Processing Society, Deutsche Gesellschaft für Akustik (DEGA), and Audio Engineering Society (AES). In 2011, he received the Lothar-Cremer-Preis of the DEGA. He is a member of the IEEE Audio and Acoustic Signal Processing Technical Committee and chair of the AES Technical Committee on Spatial Audio.