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A method is presented for fractional-octave smoothing that, for spectra that are originally
symmetric in log-frequency, preserves said symmetry after smoothing. Unlike an existing
method, which requires interpolation of the FFT spectra to a log-frequency scale, the proposed
method uses analytically-derived smoothing windows and operates directly in the FFT domain,
thereby retaining compatibility with well-established spectral smoothing techniques such as
complex smoothing. In this work the proposed method is compared with two existing methods,
the first of which is nearly ubiquitous in the field, by smoothing the magnitude response of
an analog band-pass filter (which is symmetric on a log-frequency scale) and subsequently
calculating a “center of mass” of the smoothed spectra to quantify any loss of symmetry. The
first existing method uses symmetric (on a linear scale) smoothing windows, which exhibit the
correct bandwidths but do not span the correct fractional-octave frequency ranges, whereas
the second interpolates the spectrum to logarithmically-spaced frequencies and then uses a
symmetric fixed-width smoothing window. Results show that the proposed method achieves
nearly identical smoothed spectra to the second method, but without the need for interpolation,
and that the first method indeed skews the log-symmetry of the original spectra.

0 INTRODUCTION

Frequency spectrum smoothing is a standard operation
in many fields of audio and acoustics as it reduces the of-
ten overwhelming detail of high-resolution spectra to only
the relevant information. Perhaps its most common usage
is to make frequency response data suitable for plotting.
However, smoothing is also useful when designing com-
pensation filters for transducer equalization or room re-
sponse correction, as it both reduces the dynamic range and
creates a simplified model of the system to be equalized
that, ideally, consists of only the perceptually-relevant in-
formation. In such applications it is important that the peaks
(and notches) of the compensation filter align with the cor-
responding notches (peaks) in the original response, since
failure to cancel the notch (peak) may lead to an even worse
overall response as a new peak (notch) will have been in-
troduced. Smoothing methods must therefore be employed
carefully so that prominent features of the frequency re-
sponse such as peaks and notches are not unintentionally
shifted during the smoothing process.

One application of spectral smoothing is in the design
of headphone equalization (EQ) filters, wherein the head-
phone transfer function (which describes the transmission
of sound from the headphones to the listener’s ear drums)

is first smoothed and then either inverted and used directly
as the EQ filter, or used to define a regularization function
that improves the conditioning of the inversion operation
and mitigates excessive boosting in the EQ filter [1]. Spec-
tral smoothing is also used in binaural audio to reduce the
complexity of the head-related transfer function (HRTF),
which describes the transmission of sound from a point
in space to a listener’s ear drums. As a listener’s HRTF
often contains more detailed spectral information than is
perceptually relevant, measured HRTFs can be smoothed
to a certain degree without loss of localization accuracy
or externalization [2, 3]. This enables a simplified model
of a listener’s HRTF to be used to generate perceptually-
accurate personalized binaural audio [4].

In these and other applications, it is often desired to ob-
tain an impulse response after smoothing that retains the
perceptually-relevant temporal features of the original im-
pulse response. To this end, Hatziantoniou and Mourjopou-
los [5] proposed “complex smoothing,” which extends
the procedure of fractional-octave smoothing to complex-
valued transfer functions (as opposed to the squared
magnitude response used in traditional power-spectrum
smoothing) and enables the calculation of a “smoothed”
impulse response. More recently, Völk et al. [6] proposed
a method that uses complex-valued smoothing windows
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(corresponding to exponentially-decaying time windows
applied to the impulse response) to better approximate the
temporal and spectral smoothing inherent to the human au-
ditory system. Also, as an alternative to complex smoothing,
Bank [7] presented a method of modeling transfer functions
by a finite number of parallel second-order filters (whose
poles are typically logarithmically-spaced in frequency),
and showed that this method achieves a frequency resolu-
tion similar to that of fractional-octave smoothing. Due to
this current interest in obtaining equivalent time-domain
responses after smoothing, any new spectral smoothing
method should either retain compatibility with complex
smoothing or prescribe an alternative method of obtaining
the smoothed impulse response.

0.1 Previous Work and Remaining Problems
Fractional-octave smoothing is a special case of spec-

tral smoothing in which the bandwidth of the smoothing
window is a constant percentage of the center frequency.
Consequently, to smooth frequency spectra obtained via
the fast Fourier transform (FFT) of a discrete-time signal,
wherein the spectral data points are uniformly spaced in
frequency, the fractional-octave smoothing window must
vary with frequency. Hatziantoniou and Mourjopoulos [5]
presented a method and general framework for smoothing
FFT-based frequency spectra to an arbitrary frequency res-
olution. However, this method prescribes smoothing win-
dows that are symmetric on a linear frequency scale (and
therefore do not span the correct fractional-octave bands),
which consequently introduces an error, as is shown in the
present work. Lipshitz et al. [8] prescribe interpolating the
FFT spectrum to a logarithmic frequency (log-frequency)
scale, so that a fixed-width moving-average filter may be
employed. As is shown in the present work, this approach
is able to preserve the log-symmetry of raw spectra but re-
quires leaving the FFT domain via interpolation, incurring
a computational cost and necessarily introducing errors.

0.2 Objectives and Approach
The goal of this work is to derive a fractional-octave

smoothing method that preserves the log-symmetry of the
original spectrum. Ideally, such a method should also op-
erate directly on FFT-based frequency spectra, without the
need to interpolate to a non-uniform frequency scale, and
should be compatible with complex smoothing. Addition-
ally, we evaluate the ability of existing fractional-octave
smoothing methods to preserve log-frequency symmetry
seen in the original spectrum. To evaluate the methods con-
sidered in this work, we apply each method to the magnitude
response of an analog band-pass filter, which is symmetric
on a log-frequency scale. Any loss of symmetry is examined
in terms of a “center of mass” of the smoothed spectrum.

In Sec. 1 we present the framework for fractional-octave
smoothing, followed by a brief review of the symmetric-
window method in Sec. 1.1 and the log-frequency interpo-
lation method in Sec. 1.2. We then propose an alternative
method in Sec. 1.3, perform a comparative analysis of the
three methods in Sec. 2, and conclude.

1 SMOOTHING METHODS

In general, spectral smoothing may be applied to any
function of frequency. Here, we restrict our discussion
to raw (i.e., not smoothed) frequency spectra whose data
points are specified at uniformly-spaced frequencies on a
linear scale, such as those obtained through an FFT. Further-
more, in the applications of spectral smoothing mentioned
in the introduction, the spectra to be smoothed are typi-
cally frequency or magnitude responses of acoustic transfer
functions, rather than Fourier transforms or power spectra
of time-domain signals.1 Consequently, we further restrict
our discussion to the smoothing of frequency or magnitude
responses of transfer functions.

Consider a raw, possibly complex-valued frequency
spectrum of length N denoted by X[k], where k is the dis-
crete frequency index. The smoothed spectrum is given by

Xs[k] =
N−1∑
k ′=0

W [k, k ′]X [k ′] (1)

for all integers k, k′ ∈ [0, N − 1], where, for a given value of
k, W[k, k′] denotes the kth sequence of non-negative weights
used to smooth the raw spectrum [5]. These weights are
normalized such that, for all k ∈ [0, N − 1],

N−1∑
k ′=0

W [k, k ′] = 1. (2)

The smoothing operation defined by Eq. (1) can be
thought of as a frequency-domain convolution with a
frequency-dependent kernel, W[k, k′]. In the case of a
frequency-invariant smoothing window (e.g., a fixed-width
moving-average filter), we can instead define a single
weight sequence W[k − k′] = W[k, k′], and Eq. (1) takes
the standard form of convolution.

To compute the smoothed spectrum at a given frequency
f = kFs/N, where Fs is the sampling rate, the (exact) lower

1This distinction becomes necessary when discussing interpo-
lation to a log-frequency scale. For example, for power spectra of
time-domain signals, conversion from a linear frequency scale to
a log-frequency scale should also involve a change of units of the
vertical axis, such that the values that are plotted on a linear fre-
quency scale represent power per unit linear frequency, whereas
those plotted on a log-frequency scale represent power per unit
log-frequency. Through this conversion, a pink-noise power spec-
trum plotted over linear frequency would exhibit the usual −3
dB/octave slope, while on a log-scale, the spectrum would ap-
pear flat. Consequently, on either frequency scale, integrating the
power spectrum over a given frequency band gives the total power
in that band. However, for frequency (or magnitude) responses of
transfer functions, the values that are plotted are gains for spe-
cific frequencies, regardless of the distribution of those frequency
points. Consequently, interpolation of a frequency response to a
log-frequency scale should involve only a “resampling” of the
response to logarithmically-spaced frequencies; it should not in-
volve a change of units.
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and upper cutoff frequencies of the weighting function are
given by

fL = f · 2−�/2,

fU = f · 2+�/2,
(3)

respectively [5], where � is the smoothing bandwidth in
octaves. Consequently, the ratio, Q, of the center frequency
to the bandwidth is a constant, and its reciprocal is given
by

1

Q
= fU − fL

f
= 2 sinh

(
� log(2)

2

)
. (4)

1.1 Method 1: Symmetric Weights
In the method presented by Hatziantoniou and Mour-

jopoulos [5], the smoothed spectrum is computed using Eq.
(1), where the weighting function is derived by first defining
the half-length of the kth weight sequence as

m[k] =
⌊

1

2

k

Q

⌋
, (5)

where � · � denotes rounding down to the nearest integer.
The weighting function for a rectangular window is then
given by

WR[k, k ′] =
⎧⎨
⎩

1

2m[k] + 1
for

∣∣k − k ′∣∣ ≤ m[k],

0 for
∣∣k − k ′∣∣ > m[k].

(6)

From this definition we see that each weight sequence is a
rectangular window with 2m[k] + 1 non-zero values cen-
tered around k = k′. This is in conflict with Eq. (3), as the
upper cutoff frequency should be further from the center
than the lower cutoff, but instead the two ends of the weight
sequence are equidistant to the center. As we will show in
Sec. 2, this error becomes significant for large smoothing
bandwidths.

1.2 Method 2: Interpolation to Logarithmic Scale
In the method proposed by Lipshitz et al. [8], the raw

spectrum is first interpolated to a logarithmic frequency
scale, at which point a fixed-width moving-average fil-
ter is applied. The authors suggest interpolating to N/2
logarithmically-spaced frequencies, which we denote κ[�],
given by

κ[�] =
(

N

2

) �
N/2−1

, (7)

such that 1 ≤ κ[�] ≤ N/2 for all integers �∈ [0, N/2 − 1]. The
interval in octaves between any two adjacent frequencies is
a constant, given by

β = log2
κ[� + 1]

κ[�]
= 1

N/2 − 1
log2

N

2
, (8)

and, as we did for method 1, we define the weight-sequence
half-length, μ, as

μ =
⌊

�/2

β

⌋
, (9)

which is also constant.
To perform the interpolation, Lipshitz et al. [8] suggest

a 4-point polynomial (i.e., cubic) interpolation, but, in gen-
eral, any interpolation scheme (e.g., linear, spline, etc.) may
be employed. Here, we use linear interpolation, such that
the interpolated raw spectrum, X̂ , which is now a function
of the log-frequency index �, is given by

X̂ [�] = X [k1] + (X [k2] − X [k1])
κ[�] − k1

k2 − k1
, (10)

where k1 = �κ[�]� and k2 = k1 + 1.
The smoothed spectrum, X̂s, is also a function of � and

is given by

X̂s[�] =
N/2−1∑
�′=0

Ŵ [� − �′]X̂ [�′], (11)

where Ŵ is the weighting function. For a rectangular win-
dow, Ŵ is given by

ŴR[� − �′] =
⎧⎨
⎩

1

2μ + 1
for

∣∣� − �′∣∣ ≤ μ,

0 for
∣∣� − �′∣∣ > μ.

(12)

The smoothed spectrum is then interpolated back to a linear
frequency scale by

Xs[k] = X̂s[�1] + (
X̂s[�2] − X̂s[�1]

) k − κ[�1]

κ[�2] − κ[�1]
,

(13)

where �1 = �(N/2 − 1)logN/2(k)� and �2 = �1 + 1.

1.3 Method 3: Logarithmically-Compensated
Weights

Consider a window w(φ) that is a function of the con-
tinuous variable φ (we will see later that φ is related to
frequency). Let w be an even function of φ whose total
integral is unity, i.e.,∫ ∞

−∞
w(φ)dφ = 1. (14)

For example, given a smoothing bandwidth of � octaves,
the normalized rectangular window is given by

wR(φ) =
{

1/� for |φ| ≤ �/2,

0 for |φ| > �/2.
(15)

For a given center-frequency index, k, we compute the
weighting function by successively integrating adjacent
slices of the window function, i.e.,

W [k, k ′] =
∫ �[k,k ′+0.5]

�[k,k ′−0.5]
w(φ)dφ (16)

for all integers k, k′ ∈ [0, N − 1], where φ represents log-
frequency in octaves relative to k, i.e., log2(k′/k), and the
limits of integration are given by

�[k, k ′ ± 0.5] = log2

(
k ′ ± 0.5

k

)
. (17)
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Fig. 1. Calculated weighting function W[k, k′] for methods 1 (sym-
metric weights – empty circles) and 3 (log-compensated weights
– filled circles) for a rectangular window function w(φ) (solid
curve). In this example, k = 10 and � = 1 octave. Dashed vertical
lines (and ticks on the top axis) indicate the limits of integration,
�[10, k′ ± 0.5], given by Eq. (17).

As for method 1, the smoothed spectrum is then com-
puted using Eq. (1) but with this new weighting function.
Due to the normalization of the window function imposed
in Eq. (14), each resulting weight sequence is also normal-
ized and satisfies Eq. (2).

Example. To illustrate the difference between the calcu-
lated weights and the window function, consider the weight
sequence needed to compute the value of the smoothed
spectrum at k = 10, for 1-octave smoothing. The window
function is given by Eq. (15), and the weights will be non-
zero for, at most, �k · 2−�/2� ≤ k′ ≤ 	k · 2+�/2
, i.e., k′ ∈ [7,
15], where 	 · 
 denotes rounding up to the nearest integer
and the bounds of the inequalities are obtained by substi-
tuting k for f in Eq. (3). However, integrating the window
function for all slices reveals that W[10, 15] = 0, since that
integral begins at log2(14.5/10) but the window function
already dropped to zero at φ ≈ log2(14.142/10).

The calculated non-zero weights are shown as filled cir-
cles in Fig. 1 along with the window function, both as
functions of φ. From this plot, we observe two features of
the weight sequence. First, the end points take into account
the extent to which the window function occupies the cor-
responding frequency interval, whereas simply evaluating
the window function at each k′ would only ever give ei-
ther 0 or 1/�. Second, the intermediate points exhibit a
frequency-dependent trend similar to that of a pink-noise
power spectrum. Indeed, this sequence is derived to assign
equal weight per unit log-frequency (e.g., octave), so al-
though the width of each frequency interval is constant, the
ratio between the upper and lower edges of the interval de-
creases with increasing frequency, so the weight must also
decrease.

For comparison, the weights for method 1 are also shown
in Fig. 1 as empty circles that remain constant (W[k, k′] =
1/7) for |k − k′| ≤ m[k] = 3 and zero otherwise.

2 ANALYSIS

To examine how each smoothing method affects log-
frequency symmetry, we apply each method to the magni-

tude response of an analog band-pass filter whose frequency
response is given by

H (iω) =
iω
ω0

/Q

1 + iω
ω0

/Q + ( iω
ω0

)2
. (18)

In this analysis, we choose a 1/6th-octave band-pass filter
(Q ≈ 8.65 from Eq. (4)) with a center frequency of f0 =
ω0/(2π) = 5000 Hz, and sample the frequency response
above at N = 4096 points, with a frequency resolution of
≈24 Hz (i.e., Fs = 100, 000 samples/s). The raw spectrum
is then given by X[k] = |H(2πikFs/N)|2.

To quantify any skewing of log-frequency symmetry, we
compare the center frequency, f0, of the band-pass filter
to the “center of mass,” fc, of each smoothed spectrum.2

We define fc in coordinates of log-frequency such that,
for our chosen raw spectrum (which is symmetric in log-
frequency), the result is equal to f0. This center of mass is
given by

fc = exp

⎛
⎜⎜⎜⎜⎜⎝

�0+	2/β
∑
�=�0−	2/β


log

(
κ[�]Fs

N

)
X̂s[�]

�0+	2/β
∑
�=�0−	2/β


X̂s[�]

⎞
⎟⎟⎟⎟⎟⎠

, (19)

where X̂s is the smoothed spectrum interpolated to a log-
frequency scale, obtained using Eq. (10) with Xs in place of
X, and �0 is the log-frequency index corresponding to the
center frequency f0 of the band-pass filter, given by

�0 = Round

[(
N

2
− 1

)
logN/2

(
N f0

Fs

)]
.

The limits of the summation, �0 ± 	2/β
, indicate aver-
aging over two octaves above and two below f0. The error
in the center of mass is then given in percent by

ε = 100 × fc − f0

f0
. (20)

2.1 Results
The differences between the three smoothing meth-

ods can be seen qualitatively in Fig. 2, which shows the
smoothed spectra produced by each of these methods using
rectangular windows and 1-octave smoothing. We see from
this plot that not only is method 1 unable to preserve the
log-frequency symmetry observed in the raw spectrum, but
also the smoothed spectrum for method 1 appears shifted
to the right (i.e., blue-shifted) relative to those of methods
2 and 3 and to the original spectrum.

2There is a subtle but important distinction between the center
of mass of a magnitude response (as defined here) and that of the
power spectrum of a signal (also known as the “spectral centroid”).
For a magnitude response, we can arbitrarily choose frequencies at
which to sample the response, although doing so may change the
result. A signal’s power spectrum, however, cannot be resampled
arbitrarily, as its data points represent power per unit frequency,
and therefore its center of mass is unambiguously defined.
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Fig. 2. Original and 1-octave-smoothed spectra for the magnitude
response of an analog band-pass filter. Method 1 refers to the
symmetric weights method; 2 to interpolation to a log-frequency
scale; and 3 to log-compensated weights. The smoothed spectra
produced by methods 2 and 3 are nearly identical, so both are
represented by the black curve. The bottom axis shows frequency
relative to the center frequency, f0, of the band-pass filter, while
the top axis shows frequency in kHz for f0 = 5 kHz.

Fig. 3. Error, ε, in the center of mass for different smoothing
bandwidths, �. Method 1 refers to the symmetric weights method
(denoted by filled circles); 2 to interpolation to a log-frequency
scale (triangles); and 3 to log-compensated weights (squares). Plot
markers for methods 2 and 3 are alternated for legibility.

The errors in the center of mass are plotted in Fig. 3
for each smoothing method and for a range of smoothing
bandwidths. We see from this plot that the center of mass
of the smoothed spectrum generated by method 1 increases
in frequency as smoothing bandwidth increases. For small
smoothing bandwidths (� < 1/3 octave), this error is quite
small (<1%), but becomes large (∼10%) for large smooth-
ing bandwidths.

Contrary to the center of mass, the maximum of the
smoothed spectrum for method 1 appears shifted to the
left relative to that of the original spectrum (see Fig. 2).
To further explore this phenomenon, we apply methods 1
and 3 to smooth a unit impulse located at f0, as shown
in Fig. 4. From this plot we see that the maximum of the
smoothed spectrum for method 1 occurs at a significantly
lower frequency than f0, although the precise location of the

Fig. 4. Original and 1-octave-smoothed spectra for a unit impulse
located at f0, computed for methods 1 (symmetric weights) and 3
(log-compensated weights). The smoothed spectra are multiplied
by a factor of 100 for legibility. The bottom axis shows frequency
relative to f0, while the top axis shows frequency in kHz for f0 =
5 kHz.

maximum will depend on the raw spectrum (e.g., the width
of the raw peak), the smoothing window, and the smoothing
bandwidth.

The reason for this shift can be understood in terms of
the contribution of the raw spectrum’s maximum to each
smoothed value. From Eqs. (5) and (6), as frequency k
increases, the width of the smoothing window increases
and, due to the normalization of the weights, its ampli-
tude decreases. Consequently, the contribution of the raw
spectrum’s maximum to the smoothed value decreases as
frequency increases, yielding, in this case, a steadily de-
creasing smoothed spectrum.

Method 3, on the other hand, creates a uniform spectrum
that is symmetric about f0 but has no single maximum. How-
ever, it can be verified that for other smoothing windows
(e.g., Hanning), the peak appears at f0.

3 CONCLUSION

In this paper we explored the ability (or lack thereof) of
fractional-octave smoothing methods to preserve the log-
frequency symmetry of frequency spectra. Specifically, we
examined two existing methods of smoothing, the first of
which uses a symmetric (on a linear frequency scale) win-
dow of the correct bandwidth, but whose cutoff frequencies
are not equidistant from the center frequency when viewed
on a log-frequency scale, and therefore do not correspond
to the correct fractional-octave band. The second method
requires that the raw spectrum first be interpolated to a
log-frequency scale, a process that necessarily introduces
errors, but simplifies the fractional-octave smoothing pro-
cedure to a moving-average operation with a symmetric
window that corresponds well with the correct fractional-
octave band. We proposed a third smoothing method that is
able to accurately replicate the smoothed spectrum of the
second method but without the need for interpolation. This
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method is fully compatible with other FFT-based smooth-
ing techniques such as complex smoothing (see Hatzianto-
niou and Mourjopoulos [5]) and can be employed with any
smoothing window (e.g., Hanning window, band-pass filter,
etc.), provided the window can be specified as an integrable
function of log-frequency.

We performed a numerical analysis of the “center of
mass” of the smoothed spectra produced by each method
given the magnitude response of an analog band-pass fil-
ter (which is symmetric on a log-frequency scale) as the
raw spectrum. This analysis revealed that only the first
method is unable to preserve the log-symmetry of the raw
spectrum, as it shifts the center of mass upwards in fre-
quency, resulting in a “blue-shifted” smoothed spectrum.
It is worth noting that this error is quite small for small
smoothing bandwidths (e.g., the center of mass shifts by
<1% of the center frequency for 1/3-octave smoothing) and
therefore may be tolerable in some applications. We also
smoothed a unit impulse with the first and third methods
to explore how the maximum may shift after smoothing.
Results showed that only the first method shifts the max-
imum downwards in frequency, although we expect this
phenomenon to be less significant for smaller smoothing
bandwidths.

Regarding the computational cost of the proposed
method, it is relevant to note that, for many smoothing
windows, the definite integral of the window (see Eq. (16))
can be evaluated analytically, making the calculation of
each weight sequence computationally inexpensive. Fur-
thermore, for all smoothing windows, the weighting func-
tion can be precomputed and stored in a matrix, recasting
the smoothing operation as a matrix multiplication whose
computational expense would be invariant with smoothing
method, window, and bandwidth.

Future work should include an exploration of the equiva-
lent time-domain implementation of the proposed method,
wherein smoothing is expressed as multiplication of the in-
put impulse response with frequency-dependent windows
[5] and an investigation into the perceptual differences, if
any, between the first and third methods for various smooth-
ing bandwidths and in various applications (e.g., digital
room correction, headphone equalization, etc.).
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