
PAPERS
A. Wilson and B. M. Fazenda, “User-Guided Rendering of
Audio Objects Using an Interactive Genetic Algorithm”
J. Audio Eng. Soc., vol. 67, no. 7/8, pp. 522–530, (2019 July/August.).
DOI: https://doi.org/10.17743/jaes.2019.0035

User-Guided Rendering of Audio Objects Using an
Interactive Genetic Algorithm

ALEX WILSON, AES Associate Member
(alex.wilson199@gmail.com)

, AND BRUNO M. FAZENDA, AES Member
(b.m.fazenda@salford.ac.uk)

Acoustics Research Centre, University of Salford, Salford, M5 4WT, UK

Object-based audio allows for personalization of content, perhaps to improve accessibility
or to increase quality of experience more generally. This paper describes the design and
evaluation of an interactive audio renderer, which is used to optimize an audio mix based
on the feedback of the listener. A panel of 14 trained participants were recruited to trial the
system. The range of audio mixes produced using the proposed system was comparable to
the range of mixes achieved using a traditional fader-based mixing interface. Evaluation using
the System Usability Scale showed a low level of physical and mental burden, making this a
suitable interface for users with impairments, such as to vision and/or mobility.

0 INTRODUCTION

One of the advantages of object-based audio/broadcast
over traditional channel-based delivery is that it allows for
the rendering of personalized content upon being delivered
to the audience [1]. The methods by which personalization
are achieved often require an in-depth understanding of the
problem domain. For example, automatic mixing of music
has built on developments in music information retrieval
[2], audio engineering practice [3, 4], and the emotional
response to music [5]. Meanwhile, in broadcast domains,
the clarity and intelligibility of dialogue is often crucially
important [6]. The interaction between speech signals and
other audio and visual objects, such as music and sound
effects, and the overall effect on the audience, must be
well-understood for a variety of audience groups [7].

This paper describes a system that is designed to render
an optimal audio mix by learning the preferences of the
user and writing/rewriting object metadata (such as level
and panning). While the focus is on music signals, the
scope of the work extends to linear mixing of audio sig-
nals in any domain. The example provided will assume no
existing metadata, in order to demonstrate the flexibility
of the system in adapting to user requirements, using a
“listener-as-an-object” paradigm.

1 LITERATURE REVIEW

The perceived quality of an audio mix is dependent on
both subjective impressions and objective measures of the
signal [8]. Additionally, there is some evidence to suggest
that listeners can regularly perceive the different styles of

mix engineers [3, 9]. These observations suggest that it is
important to allow the user to guide a rendering system to
some personal optimum. We propose the following require-
ments for such a system.

1. Explore a solution space that is representative of the
mixing process;

2. Acknowledge that more than one optimal solution
may exist;

3. That the optimal solution(s) may vary from user to
user, whether based on specific accessibility require-
ments or hedonic preference.

Evolutionary computing is a framework that suits these
requirements. A literature review on the use of EC in audio
applications, and the argument for it’s use in an interactive
audio renderer, can be found in earlier work by the authors
[10]. An appropriate solution space has been proposed (a
space of mixes, referred to herein as a “mix-space”) [11], as
well as a method of generating a population of mixes within
it [12], which is an early step in an evolutionary algorithm.
The work in this paper follows on immediately from [12]
and describes a method of finding personally-optimal mixes
within this space.

2 DESIGN

The flowchart in Fig. 1 illustrates the design of an audio
mixing application based on an interactive genetic algo-
rithm (IGA). The important steps in this flowchart are each
described in the following subsections. The aim of the pro-
posed system is to obtain an optimal gain vector, containing
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Fig. 1. Flowchart illustrating the design of the system.

one element per object, which is used to create a static mix
of the audio objects. Additional object metadata, such as
position and equalization parameters, are not considered
here although they are theoretically equivalent [12] and
object-panning in stereo has been implemented in previous
work by the first author [9].

2.1 Set-Up
The test audio used in trials of the developed system is

of the following form: a total of six tracks where each is a
single-channel .WAV file, PCM encoded at a sampling rate
of 44.1 kHz, and a bit depth of 16-bits. The six tracks rep-
resent vocals, guitar, bass guitar, snare drum, kick drum,
and a single overhead microphone. This precise ordering
of tracks ensured that, using the proposed framework [11,
12], the five parameters of the mix (φ1, ..., 5) have a clear
meaning: φ1 indicates the balance of the vocal to the back-
ing tracks, φ2 is the balance of the guitar to the “rhythm
section” of bass and drums, φ3 represents the balance of
bass to drums, and so on.

Considering the relatively narrowband content of the in-
dividual tracks in a multitrack session, loudness was nor-
malized according to a modified form of ITU-BS.1770 [13].
This ensures that the loudness of each track in a mix can be
retrieved directly from the gain vector and that all points in
the mix-space have the same perceived loudness [12].

The initial population of mixes was sampled from a von-
Mises-Fisher (vMF) distribution, with mean vector μ and
concentration parameter κ [12]. The vMF distribution can
be considered the spherical equivalent of a Gaussian dis-
tribution. Being points of the surface of a unit hypersphere

ensures that the �2 norm of the gain vector is equal to 1.
This has the advantage that each mix is presented at roughly
equal loudness while also having sufficient headroom to
avoid clipping. The mean vector μ represents the initial
guess for the desired mix. This could come from literature
or from a previous optimization session. In this paper we
begin with no assumptions as to what mix would be ideal
— a uniform distribution was obtained using arbitrary μ

and with κ = 0.

2.2 Clustering and Fitness Evaluation
With a large population, evaluating each mix will be fa-

tiguing for a user. Rather than directly evaluate the entire
population, one need only rate a sub-population of size c,
reducing user burden. To achieve this the total population
is divided into c clusters and a single representative mix is
taken from each cluster. After a series of tests (described in
[9]) the points were clustered in the gain-space (Rn , where
n is the number of tracks) using spherical k-means cluster-
ing, where the distance metric is the Cosine distance [14].
An example is shown in Fig. 2.

Once the sub-population is determined, the fitness of
each solution (each mix in this case) is evaluated. How this
is achieved depends on the fitness function. In a standard
GA approach, this function must be well-defined [15]. In
IGA applications, the fitness is evaluated by the user [16]
but can be augmented by an objective function, such as
those defined in [17], for example. In this system, each
mix in the sub-population is played back to the user and
directly evaluated on a chosen scale, such as preference.
Other scales may be used depending on the task.
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Table 1. Settings used in the evaluation of the IGA mixer

Parameter Description Value

n Number of audio tracks being mixed 6
d Number of variables/dimensions in solution space n − 1
Population size Number of candidate solutions per generation 100
c Number of solutions to be auditioned/evaluated in each generation 5
q Number of bits used to represent the value of each variable 7
Elite fraction Proportion of children generated as clones of fittest parents 0.05
Crossover fraction Proportion of children generated by crossover of two parents 0.85
Mutation fraction Amount of bits to be mutated in the remaining children �(q × d)/3�
Stop condition Condition which, when met, causes evolution to cease 10 generations
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Fig. 2. 1,000 solutions to a 3-track mixing problem, clustered us-
ing spherical k-means. The solutions closest to each of the cluster
centroids form the sub-population to be evaluated, and the fit-
ness of remaining samples is inferred based on these ratings and
distance to the centroid.

Since only a subset of the population is evaluated, the
fitness of the remaining individuals must be estimated.
This was achieved based on the assumption that mixes
close to one another share many common attributes and
are perceptually similar. The primary method of inferring
the fitness of an unevaluated mix was to use the dis-
tance to the evaluated mix (the mix closest to the clus-
ter centroid). Each mix within a cluster is awarded the
same fitness as the evaluated representative and then an
offset is subtracted, proportional to the distance from the
centroid [18, 19].

2.3 Genetic Operations
In this example, while clustering takes place in R

n , all
genetic operations are performed in S

n−1. This ensures that
the offspring produced by crossover and mutation are al-
ways on the hypersphere in R

n . Prior to genetic operations,
the real-valued coordinates on S

n−1 were first converted to
binary strings as follows. When the values of g are posi-
tive, the range of � is from 0 to 2π. To convert to a binary
representation, first the range is re-scaled to [0, 1] then mul-
tiplied by 2q − 1, where q is the number of bits used in the
binary representation. This has a range of [0, 2q − 1]. In
this example, q = 7, allowing 128 levels for each variable.
As an individual in the population is comprised of d = n −
1 coordinates, the values of each individual dimension were
converted to a q-bit binary string and then concatenated to
form the complete parameter vector [20].

Raw fitness values are scaled according to Eq. (1), where
r is the rank of the individual, when sorted by fitness [15].
The result is a set of scaled fitness values in the range [0,1].
This has the following advantages: a) ensures that fitness
values are positive, b) ensures that the range of fitness in
each generation is equal, and c) prevents the emergence of
“superindividuals,” whose fitness is so much higher than
others as to dominate the competition in breeding.

fscaled = 1√
r

(1)

A proportion of the population automatically survives
to the next generation. These individuals are referred to as
elites. In this case, the individuals with highest fitness are
carried forward. This ensures that high-fitness solutions are
not lost by the processes of crossover and mutation.

The crossover function (XO) is important because it pro-
motes diversity in the population of solutions, helping to
prevent the algorithm getting stuck in local minima. A num-
ber of alternative crossover functions were tested in order
to choose the most suitable for this problem.

The performance of the uniform XO was improved over
the single-point XO, measured under the criteria of diversity
of the resulting population. This allowed the population
to better explore the space and increases the likelihood
of convergence towards an optimal, rather than a local,
solution.

Individual solutions also undergo mutation, which pro-
motes diversity in the population. In this case, a fraction
of the total bits in each solution is randomly chosen to un-
dergo mutation. For each of these the value is changed from
a 0 to a 1 or vice-versa. The greater this fraction the more
noticeable the mutation.

2.4 Stop Criteria and Choosing the Optimal Mix
The most simple criteria would be to stop after a fixed

number of generations. Alternatively, evolution could cease
once the population has converged towards a sufficiently
small region of the solution space. Here, it was more ap-
propriate to use a fixed number of generations, to keep the
duration of subjective tests to a predictable timescale. It is
also possible that, by using the latter method, the system
would not always converge. Typically, in evolutionary al-
gorithms, the best solution is considered to be the solution
with the highest fitness. There are a number of reasons why
this approach is not suitable here.
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Fig. 3. Population of mixes taken from one of the evaluation sessions. Symbols/colors represent the five clusters, as described in
Sec. 2.2. The histograms along the main diagonal show the distribution of each φ term, and all have equal y-scale (0 → 100). These
plots show that, while mixes are initially distributed uniformly on the hypersphere, there are noticeable regions of convergence after ten
generations.

1. Since fitness was subtracted in proportion to distance
from the evaluated individuals, the individual with
the highest fitness will always be one of the directly-
evaluated sub-population, while that might not be
the case in reality.

2. Many problems that can be addressed by Interac-
tive Evolutionary Algorithms are perceptual and as
such do not require exact solutions but rather seek
to identify an area of the solution space in which
many good solutions exist that are perceptually sim-
ilar [16]. For example, in an audio mixing problem
there is a limit to the precision required when deter-
mining some metadata values. For example, small
adjustments in the gain of individual tracks might
not be reliably perceived.

If the population converges on a small region of the
solution space, the centroid of the final population is an
appropriate choice for the optimal solution, or “best” mix.
Determining this point employed kernel density estimation
(KDE) methods. Two methods were tested here: multiple
univariate KDE, where the density of the population is
evaluated separately for each dimension, and multivariate
KDE, where the density of the population is determined in
the multivariate space. The results from both methods were
compared and show a high level of agreement [9]. The
univariate method was used in order to reduce computation
time.

3 EVALUATION

The aim of the work in this section is to ascertain how
users interact with the system and whether or not it can be
considered useful. The following are the research questions
pertaining to this section.

1. What are the median loudness levels of instruments
when mixed using this system?

2. How does this compare to a more traditional, fader-
based approach?

3. How is the user experience evaluated, qualitatively,
by the user?

The first two questions relate to the results found in the
literature, indicating that voice is prioritized in music/audio
mixes and some consensus is observed regarding the rel-
ative levels of drums and bass in music [9, 21]. Should
similar levels and distributions of track gain be found then
it could be said that the proposed system does not prohibit
the user from finding the type of mix they would create
with a traditional system.

In addition to finding the types of mixes that are created
with the system, it is important to determine the nature of
the user-experience. The third question seeks to identify if a
user is likely to encounter difficulty with using the system.
To answer these questions, an experiment was devised in
which a number of participants were given the chance to use
the system to create their desired mix of a specific song, and
to report on their experience of the system. The experiment
took place in the ITU-R BS.1116 compliant listening room
at the University of Salford. A single loudspeaker (Genelec
8020a) was used, positioned centrally, at a distance of 1.4 m
from the listening position. Participants were free to adjust
the playback level during their evaluation of generation #1
but not thereafter. The number of participants who took part
in this experiment was 14, most of whom had previously
participated in previous audio-mixing tasks [9] and were
considered to be sufficiently familiar with level-balancing
of a number of audio signals. Furthermore, all were ei-
ther postgraduate or undergraduate students in audio and
acoustics programs, or active researchers in these areas.
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Fig. 4. Univariate KDE result from one of the sessions. Peaks
in each distribution are marked. Taking the greatest peak in each
provides a 5-element � vector (on S

5) which is transformed to a
6-element gain vector (in R

6).

The only visual information presented to the user was
a simple GUI to gather ratings of mixes and to provide
a progress update at the end of each generation. Conse-
quently, the user needed to rely solely on auditory percep-
tion and would not be able to mix based on visual or tactile
stimuli, such as with a fader-based system. When rating
mixes, participants were advised that a rating of 10/10 rep-
resented their ideal mix, while a rating of 1/10 is a mix
most far from ideal, in any of the many ways that this might
be possible. Over all 14 participants, the median amount of
time taken to evaluate 10 generations (50 mixes) was 11
minutes 17 seconds. As a mix deemed to be poor can be
evaluated rather quickly, this short duration was not unex-
pected.

Upon completing 10 generations the optimal mix was
estimated using the univariate KDE method (see Fig. 4).
This mix was then played back to the user for informal
evaluation but was not rated quantitatively.
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Fig. 5. Boxplot showing the raw fitness scores per generation for
all 14 participants’ sessions (1,400 mixes per generation).

Fig. 5 shows the distribution of raw fitness scores per
generation when data from all participants was combined.
As desired, the fitness of the population typically increased
as the system evolves. A few additional observations can
be made from this plot.

1. As the initial population is uniformly distributed on
the hypersphere, there is likely to be a variety of
mixes, rated good and bad. Since gen #2 represents
the first evolved generation it is credible that the
median fitness may drop initially.

2. As anticipated, the fitness increases over the dura-
tion of the session, mostly between generations 3
and 7. This indicates that once the system has iden-
tified an optimum point based on user ratings, after
a few generations of searching, it slowly begins to
converge.

3. This convergence reaches a saturation point at gener-
ation 7 as no regular improvement in median fitness
is observed from here on.

It is important to note that while the best mixes in a given
generation are passed on to the next generation (as "elite"
children), they may not survive another generation. This is
due to the fact that the inferred fitness is always determined
by subtracting an offset from the rated subset. The best mix
in a given generation is therefore one that was part of the
rated subset. Once the system completed 10 generations of
user-evaluation and evolution, the univariate KDE method
was used to determine that participant’s supposed ideal
mix.

3.1 Survey Responses
At the end of each “mixing” exercise, the user was played

the “best” mix and provided with a questionnaire in order
to assess the interaction between the user and the system.
The first 10 questions were from the System Usability Scale
(SUS), a short survey designed to gather information of a
system’s usability [22]. Additional questions were devised
by the authors as more directly related to audio mixing sys-
tems and this particular experiment. The list of statements
is shown in Table 3. For each the user chose a response on
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Table 2. Comparision of levels. Fader results are from [9],
where Faders(all) pertains to the entire experimental data
from that study and Faders(LS.sc) is the subset of results

matching the conditions in this, IGA, study (using
loudspeakers and the song “Sister Cities” by Hop Along).

Median Level (LUFS)

Track IGA Faders(LS.sc) Faders(all)

Vox –2.72 –2.30 –2.85
Gtr –10.84 –8.89 –8.56
Bass –10.37 –10.43 –10.46
Drums –7.62 –8.33 –8.11

Snare –14.57
Kick –16.69
OH –12.79

a 5-point Likert scale, marked at the extremes by “strongly
disagree” and “strongly agree.”

High scores on odd numbered questions indicate a pos-
itive impression of system usability, as do low scores on
even-numbered questions. Scoring of the questionnaire
results is as follows: for odd items, subtract one from
the user response. For even-numbered items, subtract the
user responses from 5. This scales all values from 0 to
4 (with four being the most positive response). Sum the
converted responses for each user and multiply the to-
tal by 2.5. This converts the range of possible values
from 0 to 10.

Table 3 shows the mean of the converted scores for each
item. Note that the score shown for items 1 to 10 is the mean
positivity (from 0 to 4), not the mean of the raw scores (i.e.,
not the level of agreement with the statement). For items 11
to 17 the score shown is the mean level of agreement with
the statement. Across all users, the median SUS score for
the system is 90, while the range was 75 to 95. This score
by itself does not offer much insight without other systems
to compare to. [23] analyzed the SUS scores from a variety
of different systems and found the average SUS score from
over 200 studies to be 70. This suggests that the proposed
system is highly usable.

4 DISCUSSION

4.1 Optimal Levels
A comparison between the median track levels obtained

in this experiment and in a fader-based experiment in the
same location is shown in Table 2. This reveals that dif-
ferences found between the two methods are small. The
largest difference is that the guitar was typically set quieter
using the IGA system, by about 2 LU. The level of the vo-
cals in the IGA experiment is closer to the Faders(all) level
than Faders(LS.sc), indicating that this level may generalize
well to other songs. A precise match between experiments
would have been surprising, especially considering the IGA
method only approximates the user’s ideal mix in the final
KDE stage. That said, the close match for vocals, bass, and
drums (to a slightly lesser extent) indicates the success of
the IGA method. From this it may be claimed with some

Table 3. Survey results for IGA mixer, showing the mean and
standard deviation of the data.

avg.
# Statement positivity std. dev

1 I think that I would like to use this
system frequently.

2.92 0.64

2 I found the system unnecessarily
complex.

3.69 0.48

3 I thought the system was easy to
use.

3.92 0.28

4 I think I would need the support of
a technical person to be able to
use this system.

3.77 0.44

5 I found the various functions in
this system were well integrated.

3.54 0.66

6 I thought there was too much
inconsistency in this system.

3.15 0.99

7 I would imagine that most people
would learn to use this system
very quickly.

3.54 0.66

8 I found the system very
cumbersome to use.

3.38 0.65

9 I felt very confident using the
system.

3.54 0.66

10 I needed to learn a lot of things
before I could get going with
this system.

3.46 0.97

avg. score

11 I felt in control of the mixing
process.

2.69 0.95

12 I thought the loudness of samples
was consistent.

3.85 0.55

13 I felt the mixes got better over
time.

3.62 0.77

14 I found the interface to be
physically demanding.

1.31 0.85

15 I thought the loudness of samples
was suitable.

4.31 0.63

16 I found the interface to be
mentally demanding.

1.31 0.63

17 I felt the test environment was
comfortable.

4.77 0.44

confidence that the IGA method is capable of creating a
range of mixes similar to that which would be created us-
ing the conventional fader-based approach but using a very
different and much less complex interface.

4.2 Usability
The statement that received the least positive response

was #1 (“I think that I would like to use this system fre-
quently”). Initially, this particular observation seems to con-
tradict the overall high score that users awarded the system.
However, while it is the least positive response, the mean
score is 2.92 on a scale of 0 to 4, suggesting a result that
is still rather positive. However, it is important to realize
that the users would have been comparing the system to a
more conventional audio mixing system and it is likely that
some preference would typically lie with a known, more
“hands on” method. Somewhat supporting this suggestion,
the next least positive statement was #6 (“I thought there
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was too much inconsistency in this system”). This seems
to indicate that difficulties experienced by users were due
to lack of direct, explicit control over the parameters of
the mix, as further corroborated by the results pertaining to
statement #11 (“I felt in control of the mixing process”).
When asked whether the system was either physically or
mentally demanding, users typically responded that neither
was the case, suggesting the system has a low level of user-
burden. Achieving its goal of low or inexistent physical
burden affords a high level of accessibility. From the SUS
items, the statement obtaining the most positive response
was #3 (“I thought the system was easy to use”). Impor-
tantly, users generally felt that mixes got better over time,
as desired.

4.3 Applications
The system described in this paper allows a method of

audio which relies only on audition, as it features a mini-
mal amount of visual or tactile stimuli. Users described the
system has having low levels of physical or mental burden.
Consequently, this system could act as a mixing assistant
to a visually impaired audio engineer, or be tailored to suit
a range of accessibility requirements, such as where mobil-
ity is impaired. It is hoped that further research into such
interfaces could widen participation in audio engineering
and broadcast careers.

In this paper the user of the system partakes in active fit-
ness evaluation, carefully considering the qualities of each
presented solution, thus allowing the all-important human
decision into the final outcome. One challenge moving for-
ward will be to complement this with other forms of fitness
evaluation, where the rating of solutions is embedded in
some other process such that the user is not aware of the
system’s learning process. One such form could be achieved
through implementing bio-physiological response into the
interaction loop [24]. This would allow for increased per-
sonalization of object-based content, where the renderer
adapts to the requirements of the user in an unobtrusive
manner.

4.4 Further Work
While a typical genetic algorithm relies on an objec-

tive fitness function, this is difficult to implement for a
subjective task such as audio-mixing. In the case of a
televised/radio drama, measures such as speech intelligi-
bility could be used as an objective function, however a
variety of constraints would be necessary, as intelligibil-
ity can easily be maximized by simply muting all other
objects.

With each learning session, the system has the potential
to adapt further. By associating the evolution of the solution
with the measured signal features of the input audio tracks,
the system could further learn general traits of audio mixing.
It has been shown that in large collections of music-mixes,
there is noticeable central tendency in the distributions of
audio signal features [17]. This could be used to provide
objective rules to help constrain the system in addition to
the guidance of the user.

Whether or not this is desired is another issue. In this pa-
per the aesthetic proposed is one where the system makes
no prior assumptions of the process. Earlier attempts at
automatic rendering have perhaps had an over-reliance on
prior assumptions and so-called best-practice mixing tech-
niques. Combining both strategies—adapting to a specific
user while also learning best-practice from a collection of
users—will be a challenge in further development of this
and related systems.

5 CONCLUSIONS

This paper has described a user-guided rendering sys-
tem, using an interactive genetic algorithm, which could be
utilized in object-based broadcast or in a more traditional
production environment. While this paper deals only with
audio levels, addition of panning and equalization is pos-
sible. When using the proposed system in a simple music-
mixing task, participants were able to create a range of
mixes comparable to those made using the conventional
fader-based system. This suggests that the system is not an
obstacle to the creation of desired content and does not im-
pose noticeable limits on what content can be created. The
system was considered to be highly usable. Both physical
and mental demands were reported to be low. Consequently
it is predicted that the system would be suitable for a variety
of applications where physical interaction is to be kept low.
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