AES standard for professional audio equipment - Application of connectors, Part 1: XLR-type polarity and gender

Users of this standard are encouraged to determine if they are using the latest printing incorporating all current amendments and editorial corrections. Information on the latest status, edition, and printing of a standard can be found at: http://www.aes.org/standards

AUDIO ENGINEERING SOCIETY, INC.
551 Fifth Avenue, Room 1225, New York, New York 10176, US.
The AES Standards Committee is the organization responsible for the standards program of the Audio Engineering Society. It publishes technical standards, information documents and technical reports. Working groups and task groups with a fully international membership are engaged in writing standards covering fields that include topics of specific relevance to professional audio. Membership of any AES standards working group is open to all individuals who are materially and directly affected by the documents that may be issued under the scope of that working group.

Complete information, including working group scopes and project status is available at http://www.aes.org/standards. Enquiries may be addressed to standards@aes.org

The AES Standards Committee is supported in part by those listed below who, as Standards Sustainers, make significant financial contribution to its operation.

This list is current as of 2019/6/30.
AES standard
for professional audio equipment —
Application of connectors, part 1,
XLR-type polarity and gender

Published by
Audio Engineering Society, Inc.
Copyright © 1992, 2019 by the Audio Engineering Society

Abstract
This Audio Engineering Society (AES) standard specifies a common scheme for wiring the connectors used in audio systems, particularly to avoid the inversion of absolute polarity among the items in the analog signal chain.

An AES standard implies a consensus of those directly and materially affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES standard does not in any respect preclude anyone, whether or not he or she has approved the document, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement with the Standard. Prior to approval, all parties were provided opportunities to comment or object to any provision. Attention is drawn to the possibility that some of the elements of this AES standard or information document may be the subject of patent rights. AES shall not be held responsible for identifying any or all such patents. Approval does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards document. This document is subject to periodic review and users are cautioned to obtain the latest edition. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
Contents

Foreword ...3
Notes to the 2012-07 printing..4
Notes to the 2019 printing...4

0 Object ..5

1 Scope ..5

2 Normative references ..5

3 Definitions ..5

4 Connector usage ...6
 4.1 Contact designation and gender ...6
 4.2 Connector pin designations ..6

Annex A Bibliography ..8
Foreword

[This Foreword is not a part of the AES standard for professional audio equipment — Application of connectors, part 1, XLR-type polarity and gender, AES14-1992.]

This document has been prepared by the Working Group on Connectors and Polarity, a working group of the Audio Engineering Society Standards Committee. It is designed in the public interest to eliminate misunderstandings that have existed for about 40 years among manufacturers, consultants, purchasers, and users of the XLR-type connector, and thus to facilitate integration of systems. While based on IEC 268-12, Sound System Equipment, Part 12: Application of Connectors for Broadcast and Similar Use, this document clarifies items considered by the committee to be ambiguous in the IEC document.

The document was prepared by the working group at open meetings held entirely at AES conventions, with the participation or consultation, or both, of manufacturers and users of audio connectors including major manufacturers and users from Australia, Europe, Japan, and the USA.

The group considered the arguments for the two conflicting wiring conventions for the 3-pin XLR connector. Both designate pin 1 as the screen (shield) or ground connection. They differ on the assignments of pins two and three. The connector, first manufactured in the USA by Cannon Electric Co., was used by Ampex Corp. in 1950 with the pin-2-return, pin-3-positive convention. Subsequently, the convention was adopted by other USA companies. The logic of the convention is that the sequence from pin 1 to pin 3 is from "lowest" to "highest" polarity, and that because pin 3 of the XLR is asymmetrically placed, it is most easily identified, and should therefore carry positive polarity. Others have argued that differences between the dynamics of input and output transducers should similarly be reflected in the pin connections.

Also around 1950 other USA manufacturers, including Ampex's then principal competitor, Magnecord Inc., adopted the pin-2-positive polarity, pin-3-return convention. It may be noted that Magnecord provided its line outputs on barrier strips marked terminal 1 ground, terminal 2 return, and terminal 3 positive polarity, leading some users to wire associated line-level XLR connectors in the same manner. Nevertheless, the pin-2-positive polarity convention was adopted for all audio levels by manufacturers outside the USA and was standardized, explicitly for microphone use, in 1975 by the International Electrotechnical Commission in its Publication 268, Part 12. The USA National Committee of IEC did not object to approval of the standard. The convention was subsequently approved for all applications by the Society of Motion Picture and Television Engineers in its Polarity for Analog Audio Magnetic Recording and Reproduction, RP-134-1986, and by the European Broadcast Union in its Conservation of the Polarity of Audio Signals in Radio and Television Production Installations, EBU Technical Recommendation R50-1988. In its deliberations, the AES working group determined that a considerable majority of manufacturers and users in the USA are now following this convention. The group also determined that the designation XLR is now generic and carries no proprietary restrictions on its use.

The group concluded that, although there are valid historical and engineering arguments for pin-3-positive, the pin-2-positive convention is now widely standardized and commercially used and must therefore be recognized. A high priority of the AES Standards Committee is the establishment of guides for uniform practice throughout the world. Particularly because current technology has blurred distinctions among different levels and applications, accepting both conventions would mean having two opposite conventions, which is to say no standard at all.

The following individuals have contributed to the preparation of this document: Dennis Bohn, Richard Greiner, Tsukasa Hara, Randall Hoffner, Irving Joel, J. G. McKnight, Daniel Queen, Ken Smalley, J. Steven Smulian, Ronald D. Streicher, David Walsfra, Phil Wilton, and John Woram.

IRVING JOEL, Chairman, AES Standards Committee WG-03 Working Group on Connectors and Polarity
1990 December

The American National Standards Institute version of this standard has not been reprinted and remains available as ANSI S4.43-1991.

Notes to the 2012-07 printing
This printing has provided an opportunity to update the format of this long-standing document to current AES style. The sequence of main clauses has been changed, however their textual content remains unaltered. A new annex of informative references has been added.

Mark Yonge
AES Standards Manager 2012-07-10

Notes to the 2019 printing
The statement in the Foreword that there were two formats differing in the assignments of pins two and three is not completely accurate. Ampex in their models 350, 400, and 400A not only had balanced inputs on XLRs with pin-2-return and pin-3-positive, but also provided for unbalanced bridging inputs with pin-1-return, pin-2-disconnected, and pin-3-positive.

Richard Cabot
AES Standards Manager 2019-01-07

Note on normative language
In AES standards documents, sentences containing the word “shall” are requirements for compliance with the document. Sentences containing the verb “should” are strong suggestions (recommendations). Sentences giving permission use the verb “may”. Sentences expressing a possibility use the verb “can”.

2019-08-24 printing
AES standard for professional audio equipment — Application of connectors, part 1, XLR-type polarity and gender

0 Object
In sound systems it is often necessary to connect pieces of equipment from different manufacturers. This standard provides a common scheme for wiring the connectors used—particularly to avoid the inversion of absolute polarity among the items in a signal chain.

1 Scope
This standard shall apply to three- and five-pin circular connectors, commonly and generically known as XLR-type, used for the interconnection of all categories of sound system components for professional audio, commercial, recording, broadcast, and similar applications, regardless of function, type, or level of the signal. It specifies the application and polarity of analog signals for these connectors. This standard does not pertain to the dimensions of the connectors.

The standard is based on IEC 268-12, Sound System Equipment, Part 12: Application of Connectors for Broadcast and Similar Use.

NOTE – Use of this connector may be restricted by safety regulations.

2 Normative references

NOTE mechanical details may be found in IEC 61076-2-103 - see annex A.

3 Definitions
3.1 Positive sound pressure
shall designate that portion of the sound wave during which the pressure is in excess of the atmospheric ambient.

3.2 Positive polarity
shall designate an electrical signal voltage which acquires a potential that has a phase angle within 90 degrees with respect to a positive sound pressure peak.