AES standard for file exchange - Spatial acoustic data file format

Users of this standard are encouraged to determine if they are using the latest printing incorporating all current amendments and editorial corrections. Information on the latest status, edition, and printing of a standard can be found at:
http://www.aes.org/standards

AUDIO ENGINEERING SOCIETY, INC.
132 East 43rd St., Suite 405, New York, NY 10017, US.
The AES Standards Committee is the organization responsible for the standards program of the Audio Engineering Society. It publishes technical standards, information documents and technical reports. Working groups and task groups with a fully international membership are engaged in writing standards covering fields that include topics of specific relevance to professional audio. Membership of any AES standards working group is open to all individuals who are materially and directly affected by the documents that may be issued under the scope of that working group. Complete information, including working group scopes and project status is available at http://www.aes.org/standards. Enquiries may be addressed to standards@aes.org.

The AES Standards Committee is supported in part by those listed below who, as Standards Sustainers, make significant financial contribution to its operation.
Abstract

Binaural listening is growing fast, because of growing sales in smartphones, tablets and other individual entertainment systems. The lack of a standard for the exchange of head-related transfer functions (HRTF) means each company keeps its binaural capture and rendering algorithms private. 3D audio is arising, and binaural listening could be the very first 3D audio vector with sufficient fidelity of HRTF.

The use of convolution-based reverberation processors in 3D virtual audio environments has grown with the increase in available computing power. Convolution-based reverberators guarantee an authentic and natural listening experience, but also depend on the acoustic quality of the applied spatial room impulse response (SRIR).

With a standardized file format for HRTF and SRIR data, each company can contribute its best algorithms, providing good personalized capture and/or rendering, allowing the consumer to choose a combination of technologies for the best quality of experience.

This document standardizes a file format to exchange space-related acoustic data, such as binaural listening parameters in the form of head related transfer functions. The format is scalable to match the available rendering process and is designed to include source materials from different databases.

An AES standard implies a consensus of those directly and materially affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES standard does not in any respect preclude anyone, whether or not he or she has approved the document, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement with the standard. Prior to approval, all parties were provided opportunities to comment or object to any provision. Attention is drawn to the possibility that some of the elements of this AES standard or information document may be the subject of patent rights. AES shall not be held responsible for identifying any or all such patents. Approval does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards document. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. This document is subject to periodic review and users are cautioned to obtain the latest edition.

Audio Engineering Society Inc., 132 East 43rd St., Suite 405, New York, NY 10017, US.
www.aes.org/standards standards@aes.org

2020-12-06 printing
Contents

0 Introduction ..4
0.1 General ..4
0.2 Documentation conventions ..5

1 Scope ..5

2 Normative references ..5

3 Terms, definitions, and abbreviations ..6

4 General specifications ..8
 4.1 Coordinate systems and spatial representations ...8
 4.2 Objects ..10
 4.3 Relation between the objects ..11
 4.4 Numeric container ..13
 4.5 Dimensions ..14
 4.6 Data ...17
 4.7 Metadata ..18
 4.8 Relation between files ..23

5 Conventions ...24
 5.1 General ...24
 5.2 Convention-specific metadata (normative metadata) ..24
 5.3 Application-specific metadata (non-normative metadata) ...24

Annex A (informative) - NetCDF ...25

Annex B (Informative) – Media, application programming interfaces, and networking26
 B.1 Media type ‘SOFA’ ...26
 B.2 Application programming interface ..26
 B.3 Networking ..26

Annex C (Normative) - Data types ..27
 C.1 FIR ..27
 C.2 FIR-E ..27
 C.3 TF ..27
 C.4 TF-E ..27
 C.5 SOS ..27

Annex D (Normative) – Convention sets ..30
 D.1 General ...30
 D.2 GeneralFIR ..30
 D.3 GeneralTF ..30
 D.4 GeneralFIR-E ...30
 D.5 GeneralTF-E ...30
 D.6 SimpleFreeFieldHRIR ..31
 D.7 SimpleFreeFieldHRTF ..35
 D.8 SimpleFreeFieldHRSOS ..35
 D.9 FreeFieldHRIR ..35
 D.10 FreeFieldHRTF ...37
 D.11 SimpleHeadphoneIR ..37
 D.12 SingleRoomSRIR ...40
 D.13 SingleRoomMIMOSRIR ..43
 D.14 FreeFieldDirectivityTF ..45

Bibliography ...50
These forewords are not part of AES69 – AES standard for file exchange – Spatial acoustic data file format.

Foreword

This standard builds upon an earlier project to define a spatially-oriented format for acoustics (SOFA). The SOFA project considered the requirements for a file format storing HRTF data and other spatial descriptions of acoustic systems. SOFA aimed at storing data representing HRTF data in a general way, capable of supporting any data measured with microphone arrays and loudspeaker arrays.

This project was developed as project AES-X212 by Task Group SC-02-08-E led by M. Parmentier. The principal authors were P. Majdak and M. Noisternig.

The following persons were involved in the development of this document in draft:

Mark Yonge
Chair, SC-02-08 Working Group on Audio-File Transfer and Exchange

Foreword to second edition, 2020

This revision describes the AES69-2020, also known as SOFA 2.0. The revision includes:

• a new spatially continuous representation of emitters and receivers (by means of spherical harmonics, also known as Ambisonics)
• a clarification on the object ‘Data’ consistently defining the dimension sizes of other variables
• information about ‘sofa’ as a registered media subtype for storage, transfer, and exchange
• new conventions describing directivity of musical instruments and loudspeakers (with flexibility not being covered by other AES standards)
• new conventions describing multiple-input and multiple-output measurements enabling complex interaction between sources and listeners (such as multiperspective representations)
• new conventions describing HRTFs represented in a spatially continuous way
• new general conventions in order to describe general measurements.
• updated description of room types.

In rare cases, this revision might break compatibility because it requires that the dimension sizes of the data object determine the dimension sizes in a file. In AES69-2015 (SOFA 1.0), this requirement was not described and the dimension sizes of other variables might have been used and enforced on the Data object.

This revision was developed by Task Group SC-02-08-E led by P. Majdak and M. Noisternig. The principal authors were P. Majdak, J. De Muynke, F. Zotter, and F. Brinkmann. Other contributors were J. Ahrens, S. Norcross, C. Pike, A. Farina, L. Neumann.

Piotr Majdak and Markus Noisternig
Chairs, SC-02-08, 2020-10-24

Note on normative language

In AES standards documents, sentences containing the word “shall” are requirements for compliance with the document. Sentences containing the verb “should” are strong suggestions (recommendations). Sentences giving permission use the verb “may”. Sentences expressing a possibility use the verb “can”.

2020-12-06 printing
AES standard for file exchange -
Spatial acoustic data file format

0 Introduction

0.1 General
A spatial acoustic transfer function describes the spatial filtering of the incoming sound, due to the listener's anatomy for example. Previously, spatial-acoustic data have been stored in various incompatible formats, making an exchange of this data difficult. This document describes a format for storing spatial acoustic data with a focus on interchangeability and extensibility and provides a basis for a wider generalised interchange of space-related audio data.

In this document, the term ‘transfer function' (TF) describes any filter, regardless the actual representation or interpretation. TF may, for example, refer to:

- The frequency domain representation of free-field head-related transfer functions (HRTFs);
- The time domain representation of free-field HRTFs, that is head-related impulse responses (HRIRs);
- The time domain representation of HRTFs measured in reverberant spaces, that is binaural room impulse responses (BRIRs);
- The Quadrature Mirror Filter (QMF) domain representation of free-field HRTFs, that is the set of QMF parameters; or, even more generally,
- The time domain representation of spatiotemporal room impulse responses, that is spatial room impulse responses (SRIRs).

If not otherwise stated, we do not distinguish between such terminologies and refer to all those filters as transfer functions.

Specifications given in ‘conventions' (that is in-detail descriptions of the data exchange format for a given data set) shall use the correct terminology, for example using HRIR instead of HRTF when the data are represented in time domain.

The following requirements are identified:

- Description of a measurement setup with arbitrary geometry; that is, not limited to special cases like a regular grid, or a constant distance, or even spatial discrete points in space;
- Self-describing data with a consistent definition; that is, all the required information about the measurement setup must be provided as metadata in the file;
- Flexibility to describe data of multiple conditions (listeners, distances, and so on) in a single file;
- Partial file support and network support;
- Available as binary file with data compression for efficient storage and transfer;
- Predefined descriptions for the most common measurement setups, which are referred to as ‘conventions'.

A TF measurement setup is described by various objects (4.2) and their relations (4.3); the information is stored in a numeric container (4.4) and structured by the measurement.

A measurement consists of data (4.6) describing a TF for a single condition, for example an HRIR, and is described by its corresponding dimensions (4.5) and metadata (4.7). All measurements are stored in a single data structure. Conventions for a consistent description of measurement setups are provided in Annex D of this document.
0.2 Documentation conventions
A Courier typeface is used in this document to identify computer listing examples to distinguish them from regular text.

1 Scope
This document standardizes a file format to exchange space-related acoustic data in various forms. The format is designed to be scalable to match the available rendering process. The format is designed to be sufficiently flexible to include source materials from different databases.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 80000-2:2009, Quantities and units – Part 2: Mathematical signs and symbols to be used in the natural sciences and technology, International Standards Organization, Geneva, Switzerland

netCDF-4 published and maintained by Unidata, Boulder, CO., US.
http://www.unidata.ucar.edu/software/
(See Annex A)

sofa media subtype as registered by the Internet Assigned Numbers Authority (IANA),
https://www.iana.org/assignments/media-types/audio/sofa
(See Annex B)