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Perceptual evaluation of immersive audiovisual quality is often very labor-intensive and
costly because numerous factors and factor levels are included in the experimental design.
Therefore, the present study aims to reduce the required experimental effort by investigating
the effectiveness of optimal experimental design (OED) compared to classical full factorial
design (FFD) in the study using compressed omnidirectional video and ambisonic audio as
examples. An FFD experiment was conducted and the results were used to simulate 12 OEDs
consisting of D-optimal and I-optimal designs varying with replication and additional data
points. The fraction of design space plot and the effect test based on the ordinary least-squares
model were evaluated, and four OEDs were selected for a series of laboratory experiments.
After demonstrating an insignificant difference between the simulation and experimental data,
this study also showed that the differences in model performance between the experimental
OEDs and FFD were insignificant, except for some interacting factors in the effect test. Finally,
the performance of the I-optimal design with replicated points was shown to outperform that
of the other designs. The results presented in this study open new possibilities for assessing
perceptual quality in a much more efficient way.

0 INTRODUCTION

Perceptual evaluation has attracted much attention in the
multimedia industry in recent decades and is mainly used
for audio, video, and audiovisual systems [1–4]. It usually
involves a set of studied system variables with a list of vari-
able levels in terms of their effects on the evaluated percep-
tual attributes (e.g., quality, preference, intrinsic attributes,
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etc.). The purpose of conducting perceptual evaluation can
range from simply understanding the relationship between
variable inputs and outputs, or within variable inputs, to
product quality development involving model optimiza-
tion. In conjunction with a number of variables involved
in the evaluation, careful design of experiment (DOE) is
a key topic discussed by researchers and practitioners to
deal with experimental constraints such as time and cost as
well as psychological and physiological effects of involving
human subjects.

The full factorial design (FFD)1 is a traditional exper-
imental design that takes into account all possible com-
binations of factors affecting the response variables and

1Please note that FFD is associated in some references with
fractional factorial design, which is different from the definition
here.
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therefore requires the most testing. The completeness of
the FFD allows for the examination of main and interac-
tion effects and testing of model curvature, resulting in
a more trustworthy empirical model, but at a higher cost
and longer duration of experimental work required. Addi-
tionally, when a system has additional features beyond the
traditional multimedia system that must be evaluated (e.g.,
haptic and spatial features in extended reality application)
and that simultaneously multiply a number of factor levels,
FFD becomes less practical.

Traditionally, two common approaches of experimental
designs are within-subject and between-subject designs [5].
When evaluating user-perceived multimedia quality (au-
dio, video, and audio-video), FFD within-subject experi-
ments are the predominant approach. This is partly due
to the relative ease with which audio stimuli can be ac-
quired/simulated and subsequently presented, compared,
and evaluated in real-time [1]. However, the number of stim-
uli is often very large, which sometimes is in conflict with
the time constraint, and bias could arise from the order of
stimulus presentation. To tackle this issue, the experimenter
used to employ a DOE that has a reduction in the number
of design points/testing conditions (e.g., fractional facto-
rial design) [6] and a balanced presentation order across
subjects and between subjects (e.g., Balanced Latin Square
design) [7, 8].

In contrast, a between-subjects design requires more sub-
jects to evaluate each condition in order to match the sta-
tistical power of a within-subjects design, which in turn
demands more resources and costs. Furthermore, there is a
chance that the collected responses differ in important ways
between conditions because different participants provide
data only for certain conditions. Several studies have re-
ported the use of a within-subject or between-subject de-
sign in the perceptual evaluation of sound [9, 10], video
[11, 12], and audiovisual [13, 14]. Recent works have also
reported the use of mixed methods for a single experiment,
as documented, for example, in [15–18].

Many attempts have been made to find an alternative
DOE that can reduce the number of conditions under test
while providing sufficient information for the analysis of
effect terms. These efforts have been driven primarily by
sensory scientists in the food industry [19] but have great
potential for application in the multimedia industry [2, 20,
21]. There are two subcategories of DOE techniques. The
first involves optimizing a set of experimental conditions
to identify a polynomial Response Surface Methodology
(RSM). Box-Behnken Design (BBD) and Central Compos-
ite Design (CCD) are two experimental designs that belong
to the RSM family. The second method is to use optimal
experimental designs (OEDs) to create tailored conditions
in the design region based on the optimization criteria ap-
plied in the model structure to estimate the values of the
model parameters.

DOE techniques beyond FFD were originally developed
out of necessity, due to the nature of experimental condi-
tions outside the audiovisual domain. For example, when
testing in real climatic conditions, agriculture, or complex
processes, it may not be possible to test all conditions, so

sparse selection of the entire design space may be the only
possible approach. This is far from the situation faced in
the audiovisual field, where in principle, FFD experiments
can be created, even if they are very large. It is there-
fore of great interest to utilize these techniques to facilitate
large-scale audiovisual experiments. Readers are referred to
Montgomery [22], Myers et al. [23], Kiefer and Wolfowitz
[24], and Pukelsheim [25] for a more detailed discussion of
DOE, RSM, and OED, respectively.

Although the evidence is limited, previous studies have
reported the use of DOE beyond FFD for perceptual evalu-
ation. RSM was applied by Lorho [20] when investigating
listeners’ preferences for headphone frequency response
equalization played back for music and speech content. In
all experiments, a CCD was chosen to obtain a quadratic
interaction between center frequency and amplitude in two
prominent peaks (3 and 11 kHz).

A shortcoming of using RSM is that the experimen-
tal points are more regularly distributed over the design
space. While BBD examines only the points that do not
have extreme factor combinations, CCD considers only the
boundary regions. Another limitation is that these designs
can provide a maximum of only three and five levels for
BBD and CCD, respectively, for each factor. To compensate
for these shortcomings, statistical OED offers a number of
advantages, including (i) efficiently filling an irregularly
shaped design space, (ii) minimizing the number of runs to
what is needed to fit the assumed polynomial model, (iii)
accommodating unusual requirements in terms of number
of blocks or number of runs per block, and (iv) being able
to handle a combination of factor types such as continuous,
discrete, categorical, and mixed.

Fela et al. [21] combined the use of FFD and OED in
studying the interaction between perceived audio, video,
and audiovisual quality in 360 videos with ambisonic
played back via head-mounted display (HMD) and multi-
channel loudspeakers. Whereas FFD was used for unimodal
evaluation (audio or video), OED was designed with the D-
optimal criterion and coordinate exchange algorithm and
used for audiovisual evaluation. Although the perceptual
quality models proposed in the study concluded that the
combined DOE was able to make accurate predictions for
the audiovisual model using both conventional and machine
learning approaches [21, 26], there was no validation of the
extent to which the D-optimal design differed from the full-
factorial design in terms of building predictive models.

Another recent approach to selecting experimental de-
sign points is the use of active learning sampling strategies,
often referred to as “active sampling.” Conceptually, ac-
tive learning is a similar approach with OED but uses a
machine learning technique in which a learning algorithm
searches specifically for the data that is most informative
to the model, rather than being trained on the entire data
set. The application of active learning has been dedicated by
previous researchers for active generation of stimulus repre-
sentations in perceptual evaluation of audio [27], video [28,
29], and audiovisual [30]. However, this method is more de-
veloped for pairwise comparison experiments, and its use
for a wide application of different evaluation methods is
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Fig. 1. Illustration of data points located in a design space gener-
ated for (a) FFD and (b) OED (n = number of design points).

considered limited. This is because it is non-trivial to find
the right query strategy and loop size in active sampling.

Following the above literature, this study set out to inves-
tigate the use of OED in audiovisual perceptual evaluation
studies. The main research question addressed in this study
is how powerful OEDs are, in particular the D-optimal and
I-optimal designs with a varying number of data points,
in detecting the effects of independent variables on the
dependent variable in evaluating the perceptual quality of
immersive multimedia content and determining to what ex-
tent the results of OEDs are beneficial or detrimental to the
evaluation compared to FFD. By introducing an alternative
experimental design that reduces the number of trials while
retaining statistical properties, this study aimed to provide
some important insights into the field of perceptual evalua-
tion in the consumer electronics and broadcasting industry.

The remainder of the paper proceeds as follows: SEC.
1 begins by laying out the theoretical dimensions of ex-
perimental design, full factorial experimental design, and
randomized OED along with the optimality criterion. SEC.
2 focuses on the materials and methodology used for the
experiments conducted in this study. The analysis of the
results obtained from the experiments is described in SEC.
3 and discussed in SEC. 4. SEC. 5 portrays the conclusion
drawn from the experiments, followed by SEC. 6, which
presents the limitations and research outlook of the present
study.

1 THEORETICAL BACKGROUND: DOE

The origins of DOEs and OEDs date back to the late
1800s, with major contributions by Peirce [31, 32]. In the
early 1900s, Ronald Fisher published two valuable texts
on the subjects, including [33] and [34], laying the foun-
dation for today’s DOE methods. Nowadays, one can take
full advantage of the power of DOE and OED because of
the available computing power that allows for easy design,
simulation, and optimization—something that 20 years ago
was not viable. A conceptual comparison of the generated
experimental design in a design space between FFD and
OED for three factors with three levels each is shown in
Fig. 1, illustrating the potential efficiency gains available
through OEDs.2

2This design was constructed using JMP Pro 15.

1.1 FFD
When using the FFD, all possible conditions in the design

space being evaluated are available, as shown in Fig. 1(a),
and it is usually not necessary to interpolate between the lev-
els of each test condition. In perceptual multimedia evalua-
tion, such designs often have high statistical power, allow-
ing the experimenter to model and explore main, two-way
and sometimes up to three-way interaction data collected
using such FFD. FFD may be feasible if only a few factor
levels are considered in the design or if high-throughput
experimental facilities are available. Nevertheless, cover-
ing a full design space to obtain useful information is often
not necessary because the lower-order effects tend to be
dominant in most of the case. To deal with this situation,
OEDs were introduced to find the numerically optimized
experimental design with respect to optimality criterion.

To understand the experimental design space in DOE
and its relation to the regression model, suppose that the
experimental design matrix D represents all experimental
settings n of each experimental factor predictor m, where
xnm denotes the observation of the nth setting of the mth
factor predictor.

D =

⎡
⎢⎣

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

⎤
⎥⎦. (1)

Suppose that the goal of a perceptual evaluation is to
model the dependence of a particular response Y given by
test assessors for each trial run. Adding matrix D to linear
regression model yields⎡

⎢⎣
Y1
...

Yn

⎤
⎥⎦ =

⎡
⎢⎣

1 x11 · · · x1m
...

...
. . .

...
1 xn1 · · · xnm

⎤
⎥⎦

⎡
⎢⎣

β0
...

βm

⎤
⎥⎦ +

⎡
⎢⎣

ε1
...
εn

⎤
⎥⎦, (2)

where design matrix D now has m + 1 columns with the el-
ements of the first column are all ones. This matrix is called
model matrix X. In Eq. (2), the nth perceptual responses
of Yn can be calculated by the model matrix X, a vector of
unknown parameters β = (β0, β1, ..., βm)T and a vector of
random errors ε = (ε1, ..., εn)T .

1.2 OED
As illustrated in Fig. 1(b), a sparse sampling of the design

space is considered compared to the FFD. The OED lever-
ages the concept of interpolation between the presented
conditions to estimate the untested factor levels based on
mathematical curve fitting principles. Conceptually, OED
attempts to reconstruct the results of FFD without testing
all conditions. Whereas the FFD is uniquely defined by the
combination of all factors and their interactions, there are
a very large number of potential OEDs to choose from,
some of which sparsely cover the design space. A word of
caution is in order at this point because not all OEDs are
equal, and the experimenter should be aware of the trade-
offs involved in using OEDs. Compared with FFD, OEDs
provide fewer conditions for assessors and as a result will
have less statistical power.
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Additionally, other techniques can be used to create an
efficient OED. This may result in a design that is not fully
balanced [e.g., the top layer in Fig. 1(b)] or certain factors
that are confounded or aliased. It is up to the experimenter
to define which levels of factors and interactions are crit-
ical to the experiment and should be examined after data
collection. This is usually based on prior knowledge of the
field and is part of the OED optimization process. For ex-
ample, in audio-video experiments, the literature often as-
sumes that all main factors and two-way interactions must
be included. In rare cases, the experimenter may wish to
include specific and carefully selected three-way interac-
tions. Ideally, the experimenter can use prior knowledge of
interactions that are usually insignificant or uninteresting
and can be excluded from the OED optimization process,
resulting in a more efficient design. Once excluded from
an OED, experiments should not attempt to analyze such
effects because they are likely to be aliased. Based on a
good understanding of the domain, the experimenter can
design efficient and robust OEDs.

A mathematical theory of optimum designs was first pro-
posed by Smith [35] for a series of single-factor polynomial
models. The first extended ideas were presented by Kiefer
[36] at a meeting of the Royal Statistical Society. In 1943,
Wald [37] proposed the criterion of maximizing the deter-
minant of the information matrix I = XT X, which later was
known as the D-optimality criterion named by Kiefer and
Wolfowitz [24] when it was extended for general use in
regression models. Whereas most studies have focused on
using the D-optimality criterion to obtain precise parame-
ter estimates, recent years have seen increased interest in
the prediction-based optimization criterion. The latter goal
is consistent with the I-optimal design, which focuses on
accurate predictions by minimizing the average prediction
variance, as discussed in Haines [38].

Applying the ordinary least-squares (OLS) estimation to
Eq. (2) produces the optimum parameters, β̂, in relation to
the information matrix of X, (I = XT X).3

β̂ = (XT X)−1XT Y. (3)

Thus, the variance-covariance matrix can be calculated for
optimum parameters β̂ and yields

C = var (̂β) = σ̂2
ε (XT X)−1, (4)

where σ̂2
ε is the approximation of mean-squared model error

or an estimation of the irreducible noise in the system. Fi-
nally, the variance can be calculated in the predicted fitting
function by

var (̂y(x)) = σ̂2fT (x)(XT X)−1f(x). (5)

Eqs. (3)−(5) are the basic equations used in optimal de-
signs, conveying the idea that optimization can be achieved
by manipulating either the determinant of the information
matrix I or the variance-covariance matrix.

The D-optimality criterion was developed by utilizing
the determinant of the information matrix |XT X|, which

3Some authors prefer to use M to denote the information matrix
X.

corresponds to covariance of the parameter estimates, to
measure the overall uncertainty [39]. It is called D-optimal
design when the objective is either to maximize |XT X| or
minimize the determinant of (XT X)−1.

Dopt = arg min
D

[
det

(̂
σ2

ε (XT X)−1
)]

. (6)

If the objective is to increase the accuracy of the model
prediction by minimizing the average variance, I-optimal
design is more appropriate and can be expressed as follows.

Iopt =
∫
χ

f(x)
(
(XT X)−1

)
fT (x)dx∫

χ
dx

, (7)

where x represents a vector of predictors in an available de-
sign space χ and f(x) is a Jacobian matrix of model param-
eters. Therefore, the integrand represents the transferring
error of model prediction from the fitting coefficients.

Another optimality criterion is G-optimality, which looks
for design points that minimize the highest predicted vari-
ance in the design space. According to [40], limiting the
maximum predicted variance is associated with an increase
in the predicted variance by more than 90%. Therefore, the
study was restricted to D- and I-optimal designs. In addition
to these optimality criteria, many other criteria that support
relatively different design objectives exist and have been
discussed in Atkinson et al. [41].

The following are some significant benefits of optimal
design: 1) it can cover all terms (e.g., x1x2, quadratic x2

1 ,
and higher-order terms x3

2 x2
3 ) in linear statistical models; 2)

depending on the number of terms included in the model
function, it allows constructing a relatively small design; 3)
the sparse sampling of optimal design makes it possible to
augment the data if the original design was not optimal; and
4) depending on the goal of DOE, a variety of optimality
criterion can be defined. In this paper, the applicability of
both I-optimality and D-optimality to audiovisual percep-
tual evaluation is investigated.

2 MATERIALS AND METHOD

The following steps were taken to carry out the study pro-
vided in this article: (i) an FFD experiment was conducted
to obtain baseline data; (ii) two existing optimality criteria
with different numbers of additional and replicated points
were applied to the OED so that twelve designs were run
for simulation; (iii) based on the simulation performance,
four OEDs were selected for the experiment; and (iv) the
performance of the FFD and the selected OED techniques
with respect to the model parameter estimates in the exper-
imental measurements was discussed.

2.1 Stimuli
Six audiovisual source materials (SRCs) were selected

from the higher-order ambisonic sound scene repository
(HOA-SSR) database,4 a public database consisting of 360
videos and higher-order ambisonic audio of 20-s length

4https://bit.ly/HOA-SSR-Dataset.
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Fig. 2. The audiovisual HOA-SSR dataset used in the study.

each [42]. All video scenes were captured using an Insta360
Pro2, a 360 camera consisting of a spherical array of six
lenses; were in raw format; and specified in YUV422 color
format, 8K resolution (7680x3840), 8 bits, and 30 fps. The
sound was recorded using an em32 Eigenmike microphone
array that capture up to fourth-order ambisonic recording.
The audio materials from the database were in Ambisonic
B-format AmbiX (25 channels, 48 kHz, and 24 bits) with
ambisonic channel number ordering and semi-normalized
3D normalization.

The equirectangular preview images of 360 videos used
in this study are shown in Fig. 2. The selection of audiovi-
sual stimuli was based on spatio-temporal features of video
and characteristic of audio [e.g., with a content of speech
(#c1), music (#c2), impulsive sound (#c3, #c6), white noise
(#c4, #c6), and speech with background noise (#c5)].

2.1.1 Encoding and Decoding
The video SRCs were converted from raw YUV422 for-

mat to playable YUV420 format before the video encoding
process. The processed video sequences were created by
using libx265 (H.265/HEVC) in FFmpeg in four quantiza-
tion parameters (QP; 0, 22, 28, 34) and three different video
resolutions (1920x1080, 3840x1920, and 6144x3072). QP
controls how much spatial detail of the image is retained in
each frame of the video. Each value in QP represents the
step size of the quantizer during video compression. The
higher QP is, the higher the quantization step size, which
compresses the image details, decreases the bit rate, and re-
sults in more distortion and some loss of quality. All audio
SRCs were encoded into four different bit rates/channels
(16, 32, and 64 kbps; pulse-code modulation/reference) us-
ing the AAC-LC encoder in FFmpeg. Ambisonic audio files
were decoded using the All-Round Ambisonic Decoding
algorithm as proposed in [43] to 26 multichannel speaker
setups, which follows the standard in [44].

2.2 FFD Experiment
The FFD experiment was conducted with two purposes

that are the collected response was treated as the data base-
line (i) to be used in design simulation and (ii) to act as a
reference model when comparing different OED models.
In the design of experiment, the factor levels can be sum-
marized as six sample clips, four video QPs, three video
resolutions, and four audio bit rates, resulting in 288 total
runs for each assessor. Twenty assessors were invited to
participate in the experiment conducted at FORCE Tech-
nology SenseLab. They were 12 males and eight females,
ranging in age from 22 to 37 years (mean = 27.9, SD =
4.0), with different nationalities, most of whom were post-
graduate students. All assessors were not hard of hearing
or visually impaired and met the selection criteria based on
a systematic screening process as described in [45].

The experiment was conducted in a standardized listen-
ing room, which complies with the acoustic requirements of
EBU 3276 [46] and ITU-R BS.1116-3 [47] and allows the
experiments to be conducted with audio (listening test) and
audiovisual systems. SenseLabOnline 4.2 [48] was used as
the user interface and conducted double-anonymized and
randomized trials. The participant sat on a swivel chair lo-
cated in the acoustic sweet spot and used a pad controller
to perform the test. The audio stimuli were reproduced
through a 26-channel system with Genelec 8040A loud-
speakers calibrated to 65–73 dB for the most comfortable
loudness depending on the samples and measured in listen-
ing position. Visual stimuli were displayed using a Samsung
Odyssey+ HMD, which has a screen resolution of 1,440 ×
1,600 per eye, a horizontal field of view of 110◦, and 90 Hz
refresh rate.

Multiple stimulus rating was used to generalize the com-
mon multiple stimulus rating method used in SAMVIQ [49]
and MUSHRA [50] for intermediate video and audio qual-
ity, respectively. A training session was included prior to
the experiment to familiarize the assessor with the protocol,
system, user interface, pad controller, and stimuli. None of
the results in the training session were included in the anal-
ysis. During the experiment, each assessor was asked to rate
his or her overall perceived quality of a combination of im-
paired audio and video stimulus on a continuous rating scale
ranging from 0 to 100, divided into five categories (Bad,
Poor, Fair, Good, and Excellent). The number of stimuli on
each trial was limited to seven to match the number of ob-
jects that an average person can hold in short-term memory
according to Miller’s Law [51]. In order to avoid simulator
sickness effect, the user interface was displayed virtually
on the head-mounted display (HMD), and the rating can
be made continuously without taking the HMD off. In the
middle of the session, the system will automatically stop
every 20 min for a short break. At the end of the experiment,
a total of 5,760 data points had been collected.

2.3 Simulated OED
Twelve OEDs (sim#1−sim#12) were simulated in JMP

Pro15, consisting of D-optimal and I-optimal experimental
designs with minimal settings (sim#1 & sim#2) and with
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Table 1. Simulated experimental design for D-optimal and
I-optimal designs (sim#1 - sim#12) derived from the FFD

experiment.

Design Type Replication Additional points Total points

FFD FFD ··· ··· 288
sim#1 D-Opt ··· ··· 120
sim#2 I-Opt ··· ··· 120
sim#3 D-Opt ··· 24 144
sim#4 I-Opt ··· 24 144
sim#5 D-Opt 24 ··· 144
sim#6 I-Opt 24 ··· 144
sim#7 D-Opt ··· 60 180
sim#8 I-Opt ··· 60 180
sim#9 D-Opt 60 ··· 180
sim#10 I-Opt 60 ··· 180

sim#11 I-Opt ··· 48 168
sim#12 I-Opt 48 ··· 168

either additional or replicated points (sim#3−sim#12) (see
Table. 1). The design with additional points means that a
set of new test conditions was added to the design space,
whereas replicated points mean that a part of current test
conditions in minimal settings were replicated to reach the
limit of the design space. The total number of data points in
each simulation was a multiple of six to allow implementa-
tion in the perceptual evaluation with a maximum of seven
stimuli (six plus one reference) in a row.

It should be noted that the main concept of OED is to
reduce the number of test conditions for the experimental
trial, which also results in a reduction of statistical power.
In the case of the simulation DOE, this could also increase
the risk of a Type I error. To avoid Type I error, a 95%
confidence interval is considered sufficient in a perceptual
evaluation study, and statistical power was also maintained
when selecting the simulated designs of sim1−sim12 to not
less than 0.7 for up to two-way interactions.

In this study, the design simulation was conducted to find
answers to the first three research questions below:

RQ1: How well do the simulated OEDs perform com-
pared to FFD in terms of predicted variance?

RQ2: What is the impact of adding and replicating data
points on the performance of the simulated OEDs?

RQ3: Are there any performance differences between
simulated OEDs and FFD?

The first two questions (RQ1 and RQ2) were examined
using a fraction of design space (FDS) plot [52], which
allows for evaluation of the FDS over which the relative
predictive variance is below a certain value. The FDS plots
for FFD and sim#1−sim#10 are shown in Figs. 3(a) and
3(b) for the D-optimal and I-optimal designs, respectively.
The slope of the curve indicates how quickly the design
reaches the maximum value of the predictive variance, with
a value closer to horizontal being preferred. Here, the per-
formance of the simulated designs is evaluated against the
FDS plots by measuring two parameters. The first param-
eter is a value of the prediction variance in 50% of the

design space (PVF DS50%), and the second parameter is a
portion of the FDS when the prediction variance is equal
to 1.5 (FDSPV=1.5), which is a threshold observed in simu-
lated OEDs with minimal settings. A horizontal and verti-
cal dashed line within the FDS plot in Fig. 3 correspond to
these two evaluation parameters. The values of PVF DS50%

and FDSPV=1.5 for each design are shown in Table 2.
The ideal condition is that the designs have low pre-

dictive variance. The lower the FDS profile, the better the
performance of the design. As can be seen in the Fig. 3,
in comparison with FFD that has a low and stable pre-
dicted variance over the FDS, predicted variance of OED
increases as the FDS progresses (RQ1). Additionally, as
summarized in Table 2, the performance varies between the
OEDs, and the FDS between the D-optimal and I-optimal
designs has a small difference but exist. From Table 2, it
can be seen that the I-optimal design variants generally per-
form better than the D-optimal design in the same setting.
The highest difference in PVF DS50% was found between
sim#3 and sim#4 with a score difference of 0.308. It is also
clear that both replication and the additional design points
(sim#3−sim#10) contribute to the lower prediction vari-
ance compared to the minimal settings (sim#1 & sim#2).
Additionally, the same number of data points added to the
design space contributes more to the reduction in prediction
variance than point replications (RQ2).

The fact that the predictive variances of I-optimal are
lower than those of D-optimal, as presented in this study,
supports the finding made in a previous study that I-optimal
provides lower integrated variance and thus increases the
accuracy of predictive models, which corresponds to one
of the ultimate goals of quality prediction [53]. Regard-
ing the proportion of FDS at certain thresholds for predic-
tion variance, it is suggested that F DS > 80% to explore
a significantly better response in a real experiment. For
an experiment that completes a series of development and
may contain noise from unknown variables, F DS > 95%
is recommended [54]. Accordingly, sim#1, sim#2, sim#5,
and sim#6 are not theoretically recommended for labora-
tory experiments because F DSPV =1.5 < 70%. On the other
hand, sim#9 and sim#10 achieve F DSPV =1.5 ≥ 95%, but
the number of 180 data points is relatively large. For the
above reasons, two more I-optimal designs were included in
the simulation (sim#11−sim#12), each with 168 data points
(trade-offs between 144 and 180 data points). The simula-
tion showed that F DSPV =1.5 ≥ 90%, which was consid-
ered sufficient for this study.

The final question (RQ3) was evaluated by a design using
FFD data as input for the response variables in simulated
OEDs. OLS was modeled for all simulated OEDs. Two-
factor interactions and a three-factor interaction (resolution
× QP × bit rate) were added as model terms. Analysis of
variance (ANOVA) was examined to determine whether the
response variable changed as a function of the level of the
independent variable. The hypothesis test in ANOVA was
as follows:

� H0 : there is no difference between the group means.
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Fig. 3. FDS plot between simulated OEDs compared with FFD respectively for (a) D-optimal design, (b) I-optimal design, and (c) OEDs
designs selected for laboratory experiments.

� H1 : at least one group differs significantly from the
overall mean of the independent variable.

The results were analyzed using the overall performance
of the ANOVA model considering all factors combined at a
high level and using the effect tests to further examine the
interaction of the independent variables. The summary of
the analysis for the FFD and simulated OEDs is presented in
Table 2. Generally, the model goodness of fit of each design
is relatively high (≥0.97), with the root-mean-square error
ranging from 2.35 to 3.71, and the mean value is about 47.0.
The ANOVA results show that the models constructed from
the FFD and simulated OEDs have a significant relationship
between the dependent and independent variables with a
p <0.05 in a 95% confidence interval. Additionally, the

influence of each factor and factor interaction on the model
was analyzed in an effect test, which was presented in the
form of F values and significance signs. For a single term
effect, video resolution (x1) has the highest F value in all
models, followed by audio bit rate (x3) and video QP (x2).
Meanwhile, the sample material (x4) has the lowest F value
for all models and makes an insignificant contribution to the
model in sim#1−sim#3. However, this condition may also
be affected by the low variation in the sample. Increasing
the number of samples could improve the significance of
this term for the model.

A standard D-optimal design (sim#1) has three insignifi-
cant terms and a relatively low F value compared with other
designs. In the same settings, the D-optimal designs have
a lower significance effect than the I-optimal designs (e.g.,

Table 2. Comparison of FDS score, model fit, and ANOVA results between FFD and simulated OEDs.

Parameters FFD sim#1 sim#2 sim#3 sim#4 sim#5 sim#6 sim#7 sim#8 sim#9 sim#10 sim#11 sim#12

Data points 288 120 120 144 144 144 144 180 180 180 180 168 168
Fraction of Design Space

PVF DS50% 0.260 1.509 1.448 0.975 0.667 1.292 1.290 0.538 0.540 1.119 1.109 0.584 1.149
F DSPV =1.5 1.00 0.50 0.54 1.00 1.00 0.67 0.69 1.00 1.00 0.95 0.96 1.00 0.91

Summary of fit
R2 0.984 0.994 0.996 0.994 0.992 0.993 0.995 0.989 0.990 0.996 0.994 0.989 0.994
Adjusted R2 0.977 0.975 0.982 0.984 0.978 0.981 0.987 0.978 0.980 0.991 0.988 0.976 0.987
RMSE 3.67 3.65 3.30 3.09 3.61 3.26 2.75 3.52 3.45 2.35 2.65 3.71 2.76
Mean of
response

47.24 46.53 47.64 47.02 47.23 47.22 46.53 47.44 47.87 47.38 46.06 47.81 46.71

ANOVA
F -value 132.08 52.23 71.57 93.86 7.05 8.85 121.28 88.98 95.47 211.20 156.05 73.93 141.11
p -value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Effect Test (F -value)
x1 2429.87 763.54 973.68 1694.37 1233.12 1162.46 1757.50 1517.74 1588.97 2928.44 2494.14 1262.84 1832.69
x2 805.33 293.45 355.56 569.00 382.87 394.87 564.49 519.59 524.95 952.24 744.88 437.68 697.82
x3 1179.45 441.00 517.90 763.39 614.27 612.29 766.51 77.89 84.21 1462.37 1222.37 651.45 874.40
x4 5.27 1.37ns 1.94ns 2.35ns 3.86∗ 1.97∗ 1.07∗ 4.18∗ 3.83∗ 5.39 2.42∗ 2.88∗ 5.34
x1 × x2 25.52 4.73 11.29 16.83 12.48 11.14 17.26 13.07 13.41 32.90 19.17 14.46 25.32
x1 × x3 83.47 3.19 27.08 51.36 38.74 29.33 44.05 46.92 51.09 77.70 65.16 41.81 55.48
x1 × x4 3.35 2.56∗ 6.25 9.59 7.47 2.84∗ 7.09 5.96 6.46 14.19 9.39 5.78 8.72
x2 × x3 12.80 9.94 9.73 15.04 11.35 15.32 18.46 19.02 2.55 23.41 23.30 12.73 26.42
x2 × x4 5.04 1.94ns 2.31∗ 4.29 1.91∗ 3.53 3.41 4.54 4.80 7.72 3.63 2.26∗ 7.54
x3 × x4 6.28 2.22∗ 2.09∗ 3.58 2.61 2.33∗ 4.85 4.06 3.53 7.20 5.02 3.65 4.05
x1 × x2 × x3 4.77 1.70ns 2.37∗ 4.68 2.07∗ 2.34∗ 3.24 3.28 3.38 8.26 4.04 2.65 5.05

x1 = video resolution, x2 = video QP, x3 = audio bit rate, x4 = sample, (∗) 0 .01 ≤ p -value ≤ 0.05 , ns = not significant
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Fig. 4. Box and whisker plot of all investigated designs. The notches, horizontal lines inside the boxplot, circles, and stars represent 95%
CI, median values, mean values, and outliers, respectively.

sim#1 vs sim#2, sim#3 vs sim#4, sim#5 vs sim#6). With
respect to the number of data points, either providing addi-
tional data points or replicating improves the significance
of individual terms in the model (e.g., sim#1, sim#3, and
sim#7 vs sim#2, sim#6, and sim#10).

Considering (i) the trade-offs between the number of
data points to be tested in each design and the design per-
formance indicated by the ANOVA results as well as the
number of significant parameters in the effect test and (ii)
the interest to test the D-optimal and the I-optimal with
minimal settings (120 data points) and modified settings,
four OEDs (sim#1, sim#2, sim#11, and sim#12) were se-
lected for the laboratory experiment. It should be noted
that minimal settings in OEDs do not necessarily give the
best performance because of the reduction of more than
50% of the data points, which may reduce statistical power.
However, this is part of the interest in evaluating how the
minimal setting might differ from the modified setting and
experimental data. In the following, these four OEDs will be
referred to as design#1, design#2, design#3, and design#4.

2.3.1 OED Experiments
The same assessors of the FFD experiment were invited

to participate in four OED experiments. However, only
19 assessors (12 males, seven females; mean age = 28.1,
SD = 3.8) were able to participate in the experiments due
to unavailability.5 Because of the extensive work with the
previous FFD experiment, an interval of approximately 1
month was scheduled between the FFD and OED exper-
iments to avoid fatigue and memory effects between the
two experiments. The experiments lasted two to three ses-
sions on different days, conducted by each assessor. The
presentation of each experimental design and the stimulus
were randomized for each assessor so that, for example,
one had the order of experimental designs #1, #4, #2, and
#3, and others had a completely different order. Finally,
the remaining experimental setups were the same as for the
FFD experiment, as SEC. 2.2 described.

5Two out of 20 assessors were unavailable, and one expert
assessor was added.

2.3.2 Analysis
The experimental data were analyzed to answer two more

research questions addressed in this study, by including:

� RQ4: Is there a difference between the results of the
simulated and experimental OEDs? If so, to what ex-
tent?

� RQ5: Is there a difference between the results of FFD
and experimental OEDs? If so, to what extent?

The OLS regression model was used to estimate the re-
lationship between one or more independent variables and
a dependent variable. A summary of model fit and ANOVA
is reported. The ANOVA was used at a 95% confidence
level (p < 0.05) to assess the significance of each variable
and its interaction based on its F and p values. The larger
the F value and the lower the p value, the greater the evi-
dence that there is a difference between group means. These
analyses were used to make comparisons between FFD and
experimental OEDs and within experimental OEDs.

3 RESULTS

3.1 Differences Between Simulated and
Experimental OEDs

Box and whisker plots showing the distribution of mean
opinion score (MOS) of perceived audiovisual quality of
all simulated and experimental designs are shown in Fig.
4. Overall, the range of data for each design is relatively
similar in the lower and upper ranges (between 10 and 99).
The quartile range of design#1 is shorter compared with
the other designs. The mean of all designs has a relatively
similar range between 40 and 50, with the experimental
results being slightly lower than the simulations for both
the mean and median. Nevertheless, the differences are
not significant, as shown by the overlapping confidence
intervals. According to Fig. 4, there is no difference be-
tween simulation and experiment for the data distributed
in each design. This is also evidenced by a calculated
multiple independent t-test, as shown in Table 3, which
shows p values >0.05, indicating that there is no signifi-
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Table 3. Multiple t-test comparison between experiment and simulation for each
and overall designs.

Design Group1 Group2 n1 n2 t df p

All Experiment Simulation 576 576 –1.35 1149 0.177ns

design#1 Experiment Simulation 120 120 –0.940 238 0.348ns

design#2 Experiment Simulation 120 120 –0.456 238 0.649ns

design#3 Experiment Simulation 168 168 –0.497 334 0.620ns

design#4 Experiment Simulation 168 168 –0.832 334 0.406ns

ns = not significant

cant difference between experiment and simulation for each
design (RQ4).

3.2 Differences Between FFD and Experimental
OEDs

Table 4 shows a summary of OLS and ANOVA results
of FFD and OEDs in order to answer RQ5. The means
range from 43.71 to 47.24, with FFD and design#1 having
the largest and smallest means, respectively. The model fits
show that the coefficient of determination R2 is higher than
0.97 for all models, demonstrating good prediction accu-
racy. design#1 has the largest R2 (0.984) and the small-
est RMSE (3.12) among all designs, whereas the adjusted
R2 has the largest value for design#4 (0.983) and RMSE
= 3.31. In linear models, R2 tends to be overestimated
because it always increases with the number of indepen-
dent variables in the model. Therefore, the adjusted R2

or so-called “corrected goodness-of-fit” attempts to cor-
rect for this overestimation by determining the percent-
age of variance in the target field that is explained by
the inputs.

Based on the results of the ANOVA, all models show
strong evidence against the null hypothesis illustrated by

the F and p values, implying that H0 is rejected and H1 may
be accepted. The I-optimal design with 48 repeated points
(design#4) has the largest model F value according to FFD
with F = 132.8, followed by design#1 (73.06), design#2
(64.44), and design#3 (54.46). In terms of the effect test,
video resolution (x1) has the highest effect in the single
interaction, followed by audio bit rate (x3), video QP (x2),
and sample material (x4). It can be clearly seen that the
effect of the sample material is rather small compared with
the other factors (F < 6.0). This result supports Lorho’s
[20] earlier study that the effect of the sample material is
significant in the main effect but may vary in the interaction
effects.

Likewise, in this study, sample material (x4) remains sig-
nificant for the model, even though this factor does not
contribute significantly in the factor interaction terms, as
indicated by the low F value and the higher p value, e.g.,
(x1 × x4) in design#1, (x2 × x4) in design#1 and design#3,
and (x3 × x4) in design#2. The fact that these interaction
effects are not significant indicates that the joint variability
between the sample material (x4) and corresponding factors
is greater than other factors. The three-factor interaction (x1

× x2 × x3) is not significant for design#2 and design#3. The

Table 4. Comparison of model fit and ANOVA results between FFD, simulated OEDs, and experimental results.

Parameters FFD design#1 design#2 design#3 design#4

Data points 288 120 120 168 168
Summary of fit

R2 0.984 0.996 0.995 0.985 0.992
Adjusted R2 0.977 0.982 0.980 0.967 0.983
RMSE 3.67 3.12 3.59 4.41 3.31
Mean of response 47.24 43.71 46.23 46.53 44.53

ANOVA F -value p -value F -value p -value F -value p -value F -value p -value F -value p -value

Model 132.08 <0.0001 73.06 <0.0001 64.44 <0.0001 54.46 <0.0001 103.42 <0.0001
Effect Test (F -value)

x1 2429.87 <0.0001 997.06 <0.0001 895.96 <0.0001 931.01 <0.0001 1168.38 <0.0001
x2 805.33 <0.0001 454.82 <0.0001 332.02 <0.0001 319.72 <0.0001 553.36 <0.0001
x3 1179.45 <0.0001 571.60 <0.0001 439.87 <0.0001 459.89 <0.0001 645.28 <0.0001
x4 5.27 0.0001 5.31 0.0016 5.52 0.0013 3.32 0.0092 5.78 0.0001
x1 × x2 25.52 <0.0001 13.74 <0.0001 9.22 <0.0001 12.07 <0.0001 24.58 <0.0001
x1 × x3 83.47 <0.0001 38.66 <0.0001 32.81 <0.0001 33.81 <0.0001 39.07 <0.0001
x1 × x4 3.35 <0.0001 1.89 0.0923ns 5.77 0.0001 3.72 0.0004 4.00 0.0002
x2 × x3 12.80 <0.0001 15.88 <0.0001 8.93 <0.0001 11.02 <0.0001 22.07 <0.0001
x2 × x4 5.04 <0.0001 1.99 0.0585ns 2.12 0.0432∗ 1.44 0.1504ns 4.15 <0.0001
x3 × x4 6.28 <0.0001 3.09 0.0052 1.40 0.2161ns 2.74 0.0021 4.49 <0.0001
x1 × x2 × x3 4.77 <0.0001 2.80 0.0077 1.51 0.1626ns 1.29 0.2168ns 3.94 <0.0001

x1 = video resolution, x2 = video QP, x3 = audio bit rate, x4 = sample, (∗) 0 .01 ≤ p -value ≤ 0.05 , ns = not significant
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Fig. 5. Comparison of MOS-CI between FFD and four OEDs in terms of the effect of audio bit rates.

smallest F value for video resolution (x1) and audio bit rate
(x3) in design#2 compared with the others may be the rea-
son for this observation, similar to the sample materials
(x4) in design#3, which have the smallest value among the
other designs. These insignificant interactions may be due
to unique conditions or design points generated by each
OED algorithm.

Thus, it shows that among all OEDs experimented in
this study, the I-optimal design with repetition design#4
can produce the design that produces a significant effect
for all terms (p < 0.05). Note that this reasoning should
not neglect the influence of unknown factors, such as the
practical aspect of experimental design and expertise of the
selected assessors.

3.3 Analysis of design#1 and design#4
As summarized in Table 4, there are competing per-

formances between design#1 and design#4. Although de-
sign#1 has the best fitting performance in terms of a high
adjusted R2, design#4 is the design with the most signifi-
cant effect among the others. In Figs. 5–7, the effect of the
audio-video encoding parameters on the perceived quality
score is presented in terms of the MOS with a 95% con-
fidence interval (MOS-CI) and compared between the de-
signs. Examination of the overlapping confidence interval
led to two important discussion points related to the perfor-
mance comparison between design#1, design#4, and FFD;

these are (i) the MOS-CI distance between design#1 or de-
sign#4 and FFD and (ii) the performance of design#1 and
design#4 in detecting the influence of encoding parameters
on MOS.

Fig. 5 shows the effect of audio bit rate on MOS averaged
across video resolutions and QPs. In FFD, MOS increases
as the bit rate is increased, with the significant difference
varying by sample clip. In contrast, the result of MOS varies
as a function of clips, with OEDs unable to detect the differ-
ence between 64 kbps/channel and 1,152 kbps/channel in
most cases. design#4 shows better performance compared
with design#1, except for #c3. Between these two OEDs,
design#4 has a smaller gap with FFD in overall performance
compared to design#1. For most occurrences at each clip,
design#4 performs better than design#1 except at #c1 64
kbps, #c3 1,152 kbps, and #c6 64 kbps.

In Fig. 6, the effect of QPs on MOS is shown as an
average of audio bit rates and video resolutions. Similar
to Fig. 5, the performance of the OEDs varies depending
on the encoding parameters (video QP) and sample clips.
From the overall performance, it is clear that design#1 has
the lowest MOS compared with the other designs and that
design#4 has the most overlap MOS with FFD. Finally,
the effect of video resolution on MOS average of other
encoding parameters is shown in Fig. 7. In contrast to the
previous two subfigures, the OEDs can discriminate very
well between video resolution and sample clips and show
a similar trend to FFD in all cases. Moreover, the trend is
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Fig. 6. Comparison of MOS-CI between FFD and four OEDs in terms of the effect of video QPs.

Fig. 7. Comparison of MOS-CI between FFD and four OEDs in terms of the effect of video resolutions.
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very close to a linear distribution for clips overall and for
#c3. design#4 slightly outperforms design#1, except in the
case in which design#1 overlaps more with FFD, such as
#c2 4K.

4 DISCUSSION

There is an interest in understanding the perceived quality
of multimedia and how individual factors interact in con-
structing overall perceived quality. In addition to numerous
efforts on the algorithm development to propose predictive
metrics, perceptual assessment by using human subjects is
critical because (i) technological development can augment
human perception, especially in terms of multimodal as-
sessment, e.g., adding additional factors and modalities can
contribute to confounding factors and thus affect the overall
judgement, and (ii) with careful experimental design, this
is considered the Excel method to validate the accuracy of
predictive metrics. However, the traditional DOE, which is
commonly used in this field, such as FFD, may quickly
become infeasible as the number of factors increases in
multimodal assessment in the next-generation multimedia
system. With these considerations, this study was moti-
vated to find alternative designs that can generally reduce
the experimental burden while maintaining the statistical
criterion.

An important caveat in conducting an OED for percep-
tual evaluation is that the experimenter should have an idea
of the goal of the experiment in order to choose an ap-
propriate optimality criterion. Although OED is based on
a single mathematical derivation [see Eqs. (3−5)], the cri-
terion applied to OED is related to the experimental ob-
jective in terms of change in variance. The D-optimality
criterion aims to minimize the determinant of the variance-
covariance matrix corresponding to a subset of β and can be
useful when the interest is only on a subset of the parame-
ters. Whereas the D-optimality criterion minimizes the av-
erage variance of the parameter estimates, the I-optimality
criterion looks for experimental designs that minimize the
average variance of the prediction and thus can be advan-
tageous in experiments aimed at model prediction [53]. To
evaluate the robustness of a constructed experimental de-
sign, the FDS plot shows the fraction of the experimental
design space in which the relative prediction variance is
below a certain value [55]. It is desirable to have a large
FDS with low values for the prediction variance [52].

When selecting the optimality criterion, design simula-
tion can be explored first. One way to perform the design
simulation is to use the FFD dataset from the previous ex-
periment or public datasets as input data for the response
variables. In the study presented here, the FFD experiment
was used to generate the data for the simulation and to
demonstrate the performance of OED and FFD. Therefore,
performing FFD prior to the OED experiment should not
be considered a practical step for future work. Another way
to perform simulation is to use available data sets of similar
experiments, but this is not always the case because each
DOE is often unique. Another alternative is to use simu-
lation techniques such as Monte Carlo, which are able to

simulate the design by adding random noise to factors and
predictions for the model [56, 57]. A notable finding of
the simulation strategy adopted in this study was that the
difference between the model fit parameters of FFD and
the simulated designs was relatively small and that the sig-
nificance of the main and factor interaction effects could
vary depending on the design and number of data points
included (RQ1−RQ3). The more data points, the fewer the
number of insignificant effects. It should be noted that these
results apply only to this case and that a different simulation
strategy may result in a different trend.

One of the main interests in the simulation field is to vali-
date the results obtained from simulation with experimental
data. The reason for this is that during the experiment, addi-
tional noise may occur because of unknown variables, and
the data may differ compared to the simulation. If the data
obtained from the experiment is not significantly different
from that of the simulation, it means that the simulation
strategy is considered valid and can be proposed for future
testing. As shown in Fig. 4 and Table 3, the authors’ ef-
forts have satisfied the above condition. This results in the
another finding of this study, that the simulation strategy
is accurate when simulating real experimental data (RQ4).
Nevertheless, this finding does not necessarily apply to the
general cases of perceptual evaluation. Instead, it can be
applied to omnidirectional multimedia formats if some spe-
cific considerations are made, such as the encoding param-
eters and evaluation method used in the study.

The final research question (RQ5) aimed to quantify
the difference between FFD and the four OEDs studied.
Although OED can save between 41.6% (design#3 and
design#4) and 58.3% (design#1 and design#2) in experi-
mental effort compared to FFD, the trade-offs should be
highlighted. From Table 4, it is evident from the factor in-
teraction between x1 × x4 that the F values of OEDs are
significantly lower than FFD. Moreover, some OEDs have
factor interactions with non-significant p values. Figs. 5–7
shows the deficiencies of OEDs in detecting the influence
of encoding parameters and sample clips on MOS.

Regarding the OED comparison, although design#1 con-
tributes to the largest R2 and lowest RMSE values, it does
not capture the significant effects of the two-factor interac-
tion of (x1 × x4) and (x2 × x4). Additionally, the corrected R2

value, called the adjusted R2, should be considered a more
valid method for evaluation because it can avoid overes-
timation of the model prediction. Based on this fact, de-
sign#4 is expected to outperform other designs, including
design#3, which has the same number of data points. It also
appears that all effect terms in design#4 are significant (p
< 0.005) for the model that provides the best results for
FFD. The advantages of using design#4 are shown in Figs.
5–7, where it can approximate the FFD results very well
for most conditions. This reflects the next findings that (i)
the I-optimal design with 40% repeated points (120 stan-
dard points + 48 repeated points) can make a significant
contribution that is relatively similar to FFD and (ii) the
repetition of data points makes a greater contribution to
significant effect terms than additional data points in the
I-optimal design.
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It is argued that the aforementioned shortcomings are
due to the specific test conditions (data points to be tested)
that are unique to each OED. For example, such a design
may be dominated by high audio bit rates, low QP, and high
video resolution in one sample clip and a different condi-
tion in another sample clip. In practice, this results in some
trials being dominated by a set of stimuli that have a low
perceptual distance, making the assessment process even
more difficult and easily failing the test assessor. The solu-
tion can be found before the design is created by specifying
how flexibly the values of a particular factor can be changed
or by specifying a weighting value for a particular factor if
it is known. Although these solutions are possible, they are
not trivial and require prior knowledge of the experiments,
which is beyond the scope of this study.

5 CONCLUSION

This paper presented the results of a comparison between
the classical FFD and OEDs in the application of audio-
visual perceptual assessment in an omnidirectional media
format. The study was conducted by running 12 DOE sim-
ulations from FFD experimental data and selecting four
designs for laboratory experiments to answer RQ1−RQ5.
The primary goal of this study was to gain knowledge with
empirical evidence on the effectiveness of OEDs for audio-
visual perceptual assessment.

The current results show that the data distribution result-
ing from all OEDs in this study is experimentally valid for
simulated data. ANOVA showed that the variation between
experiment and simulation is represented by a large differ-
ence in F value. This is an indication that the experiment
must be carefully designed when using OEDs. Neverthe-
less, the proportion of significant terms between simula-
tion and experiment is similar, e.g., the fact that minimal
design of D-optimal (design#1) contains more insignifi-
cant terms compared with I-optimal (design#2). Moreover,
the study empirically shows that a number of insignificant
effect terms can be reduced by adding or replicating a num-
ber of data points in the design space, as shown in design#3
and design#4. It is also concluded that I-optimal design
with point replication in design#4 has the largest F value
(103.42), can provide all significant factor and factor inter-
actions in the effect test, and is therefore considered as the
best OED among other OEDs observed in the study.

6 LIMITATION AND RESEARCH OUTLOOK

This work was exploratory and limited to understanding
the potential of OEDs rather than specifically outperform-
ing FFDs. Instead, OEDs was compared to each other to
analyze how close a significance test of each term in each
design is to the FFD. This work was also limited to the min-
imal OED settings and basic modification by additive or
duplicative points. As for the experiment, the assessments
were considered lengthy because each assessor was asked
to participate multiple times, which may lead to inaccurate
recall and memory effects. However, the decision to use the
same group of assessors was made to ensure that the asses-

sors have a similar level of experience in omnidirectional
media evaluation. Additionally, the use of assessors with
the same level of experience requires extensive training,
and the use of assessors with different levels of experience
will affect statistical results [1].

For the experiments conducted in this study, omnidi-
rectional (360◦) audiovisuals were used because they are
considered a borderline case between traditional multime-
dia and extended reality systems (virtual, augmented, and
mixed reality), in which the number of factors and factor
levels in DOE can be easily increased. However, there is
no doubt that the OED presented in this study can be used
for any experiment with a multimedia system as long as
it meets the requirements of the OED (e.g., the test factor
should be either categorical or numerical). Moreover, for the
quality defined in this work, the compression paradigm was
used, which is due to the effect of some basic audio-video
compression parameters in the omnidirectional multime-
dia format [58, 59]. Undoubtedly, other parameters can be
included, and there are several factors that can affect the per-
ceived quality, such as the type of loudspeaker setup, signal
processing algorithms, head-related transfer function when
testing headphones, audiovisual presentation, test condi-
tions, etc., which are currently not the subject of this study
but are highly recommended for future studies.

Future work should aim to test a different experimental
design depending on the application, where optimization
paradigms such as RSM, Plackett-Burman experimental
design, OED, and active learning method can be used. An-
other line of research is the adaptation of OED for different
applications, either with a single or multimodal evaluation
for the domestic experience or even for extended reality
applications (e.g., virtual, augmented, or mixed reality).
Additionally, the evaluation metrics may also vary for each
aspect of quality of experience. Finally, some of these men-
tioned designs require either numerical only or categorical
independent factors, which limits OED to some applications
of perceptual assessment studies with nominal factors.
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