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Individual sounds are difficult to detect in complex soundscapes because of a strong overlap.
This article explores the task of estimating sound polyphony, which is defined here as the
number of audible sound classes. Sound polyphony measures the complexity of a soundscape
and can be used to inform sound classification algorithms. First, a listening test is performed to
assess the difficulty of the task. The results show that humans are only able to reliably count up to
three simultaneous sound sources and that they underestimate the degree of polyphony for more
complex soundscapes. Human performance depends mainly on the spectral characteristics of
the sounds and, in particular, on the number of overlapping noise-like and transient sounds. In
a second step, four deep neural network architectures, including an object detection approach
for natural images, are compared to contrast human performance with machine learning–based
approaches. The results show that machine listening systems can outperform human listeners
for the task at hand. Based on these results, an implicit modeling of the sound polyphony based
on the number of previously detected sound classes seems less promising than the explicit
modeling strategy.

0 INTRODUCTION

The human auditory system shows its impressive ca-
pabilities when listening to complex soundscapes, which
range from scenarios with multiple active speakers (of-
ten referred to as cocktail party scenarios), music en-
sembles with several instruments, and everyday sound-
scapes with multiple static and moving sound sources.
In many tasks such as audio source separation, speech
recognition, and music transcription, algorithms benefit
from prior information about the number of sound sources
(sound polyphony).

In the auditory scene analysis model proposed by Breg-
man [1], the human auditory system groups audible sounds
along frequency (simultaneous grouping) and time (sequen-
tial grouping). As a result of this grouping, sounds are either
integrated into a single auditory perception, which is men-
tally assigned to a single sound source, or segregated into
different auditory streams, which are assigned to individual
sound sources. In dense soundscapes particularly, group-
ing errors can cause the auditory stream segregation to fail
and overlapping sounds to be perceived as blended sounds,
which complicates their classification.

The concept of polyphony can be interpreted from differ-
ent perspectives, and its estimation is addressed in various
research tasks. In the music domain, polyphony denotes the
number of simultaneously sounding pitched sound events
(tones) or temporal sequences thereof (melodic lines) [2].
A closely related task is music ensemble size estimation,
which aims to estimate of the number of simultaneously
active instruments [3]. In speech processing, a common
task is to estimate the number of active speakers (speaker
counting). In the computer vision domain, related research
tasks are object counting [4] and face counting [5] in natural
images.

In this study, the authors investigate the task of sound
polyphony estimation (SPE) for everyday sounds. Salamon
et al. define sound polyphony as the maximum number of
overlapping sounds at any time in an audio recording [6]. As
a disadvantage, this definition requires precise sound event
annotations, which are ill-defined for sound classes with
ambiguous start and end times. Therefore, the authors pro-
pose an alternative definition and measure sound polyphony
as the number of unique sound classes audible in a short au-
dio segment. This definition focuses on sound event tagging
(SET), i.e., classifying audible sounds without precisely lo-
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Fig. 1. Example of a polyphonic soundscape (USM evaluation set,
445.wav, sound polyphony degree of yp = 4). Log-magnitude–
scaled Mel spectrograms are shown for the four underlying audio
stems of the sound classes truck (c), dogs (d), rain (e), and drilling
(f), as well as for the mixture (a). The colored plot (b) illustrates
how sounds overlap in the time-frequency space.

cating them. As an additional self-imposed constraint of this
study, the authors restrict themselves to single-channel au-
dio recordings, suppressing the spatial perception of sound
sources based on multi-channel information. Such single-
microphone setup can be relevant for low-cost acoustic
sensors.

As an introductory example, Fig. 1 illustrates a 5-s
single-channel soundscape recording as Mel spectrogram
[Fig. 1(a)], which includes sound events from the four
sound classes “truck” engine, “dog” barking, “rain” drops,
and “drilling” [Figs. 1(c)–1(f)]. Although each sound class
shows distinctive spectral patterns, these patterns overlap
as shown in the colored spectrogram plot [Fig. 1(b)]. A
polyphony degree of four is assigned to this soundscape
even though some of the sound classes appear as multiple
sound events.

As the main contributions of this study, the human
and machine performance for SPE are compared based
on single-channel audio recordings. The results of a lis-
tening test are first presented and the human ability to
count sound classes in polyphonic soundscapes is ana-
lyzed in detail. The authors then investigate the perfor-
mance of several deep neural networks, which are trained
to model SPE either explicitly or implicitly by first classi-
fying active sound classes before counting them to com-

pute the sound polyphony. The studied machine listen-
ing methods are based on Mel spectrogram input and in-
clude an adapted object detection algorithm, which is fine-
tuned to recognize sound classes based on characteristic
spectral patterns.

1 RELATED WORK ON AUDITORY COUNTING
TASKS

1.1 Human Performance
Early psychoacoustic research involved listening tests

based on simple stimuli, for example sinusoids and noise-
like signals [7]. Natural audio signals such as speech, mu-
sic, or everyday sounds are more complex in their spectral
composition [8–10]. Despite their widely differing spec-
tral properties, these signals are processed by the human
auditory system using the same organizational principles
[11]. The auditory perception of complex acoustic environ-
ments is challenging due to the unpredictable number of
sound sources. At the same time, the number of auditory
streams that humans can process simultaneously is limited
to a maximum of four sources according to Kawashima et
al. [12]. As a potential reason, Weisser [13] argues that the
human auditory system gradually loses information during
the processing of audio signals on the way from the ear pe-
riphery, stream formation, attention, to the final cognition
step in order to avoid cognitive overflow and to better focus
on particular sound sources.

Two studies investigated how the ability to recognize
and annotate sound events is influenced by the number
of concurrent sounds and their spectral characteristics.
Carthwright et al. [14] showed that the human perfor-
mance in annotating sound events decreases with increasing
sound polyphony. As the main reason, the authors found
that with more complex sound mixtures, humans tend to
miss more and more relevant sound events (decreasing
recall measure), whereas the annotation quality remains
stable (stable precision measure). Piczak [15] found that
the human sound event annotation performance is lower
for noisy and ambient sounds and higher for more dis-
tinct sound sources as well as human and animal sounds.
Given these results, the authors hypothesize that annotators
tend to underestimate the sound polyphony degree in com-
plex soundscapes and that the polyphony annotation per-
formance is affected by the spectral characteristics of the
audible sounds.

With a focus on music signals, Schöffler et al. [16] con-
ducted a listening test on the task of counting musical in-
struments in short audio excerpts. Similar to this study, the
stimuli covered polyphony degrees between one and six,
which corresponds to one up to six different instruments
per recording. The results showed that annotators could
only reliably count up to three instruments. Similarly, hu-
mans can accurately segregate and count up to three simul-
taneous musical voices [17]. The performance decreases if
the corresponding instrument timbres are more similar to
each other [18].
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Fig. 2. SPE modeled explicitly using fSPE (lower branch) or im-
plicitly by counting the number of sound classes estimated by an
SET model fSET (upper branch).

1.2 Machine Performance
In this section, the authors will contrast the human per-

formance on auditory counting tasks as discussed in the
previous section with that of algorithms. Such algorithms
often combine methods from audio signal processing and
machine learning to estimate the number of sound sources.

In speech processing, the estimated number of speak-
ers is often used to inform source separation algorithm in
order to isolate each speaker signal. In contrast to natural
soundscapes, the acoustic characteristics of different speak-
ers can be very similar and therefore harder to distinguish.
The number of speakers is commonly estimated explicitly
using a multi-class classification approach [19, 20] based
on deep neural networks or via clustering of sound sources
in latent representation spaces [21–23].

The task of counting sound sources in soundscapes is
commonly approached by analyzing multi-channel record-
ings. Several authors proposed methods for joint sound
source counting, localization, and separation [24–26]. Be-
cause the spatial composition of a soundscape can be cap-
tured by the multi-channel recording setup, the number of
(spatially distributed) sound sources can be estimated with
high accuracy values of up to 89.8% for six sound sources
[25]. Multimodal approaches, which analyze both audio
and visual data by learning joint representation spaces, ex-
ist for tasks such as crowd counting [27, 28] and repetition
counting [29].

2 TASK DEFINITION

In this study, the authors represent a soundscape record-
ing using a single-channel audio sample vector x ∈ R

Ns

of Ns samples. A soundscape commonly includes multiple
sound events, each associated to one of Nc sound classes.
A sound class activity vector is defined as yc ∈ {0, 1}Nc ,
which indicates whether at least one sound event in x is
associated to the c-th sound class with c ∈ [1, Nc]. Fur-
ther, the sound polyphony degree yp is defined, and SPE is
considered as the task of learning the mapping

fSPE : x ∈ R
Ns �→ yp ∈ Z. (1)

As illustrated in Fig. 2, the authors distinguish between
explicit SPE and implicit SPE (as in [30]). Whereas explicit
SPE directly estimates yp from x as in (1), implicit SPE first
uses a (multi-label) SET model

fSET : x ∈ R
Ns �→ yc ∈ {0, 1}Nc (2)

to estimate the sound class activity yc for each of Nc sound
classes based on the threshold sigmoid layer output of fSET.
Then, yp is simply estimated from the number of active
classes using

yp =
Nc∑

i=1

(yc)i . (3)

As confirmed by the majority of the listening test partici-
pants (compare SEC. 4), human listeners tend to approach
the SPE task in an implicit fashion, detecting sounds prior
to counting them.

3 DATASET

A manual annotation of the temporal boundaries of sound
events in polyphonic soundscapes is labor-intensive and of-
ten further complicated by the overlap of concurrent sound
events. As a consequence, many academic datasets include
artificially generated soundscape recordings, which can be
created in abundance by randomly mixing multiple isolated
sound recordings [6, 31, 20]. In this study, the publicly-
available Urban Sound Monitoring (USM) dataset [32],1

which includes 24,000 polyphonic soundscapes of 5 s du-
ration, was used. Every soundscape is created by mixing
between one and six isolated sound recordings (stems)
using random loudness ratios and spatial positions in a
two-channel setup. A distinction is made between fore-
ground and background sounds. Prior to the mixing, all
stems are normalized to a perceived loudness of –12 dB
LUFS based on ITU-R BS.1770-4 specification (see [32],
SEC. 2.3 for details). The dataset covers 26 sound classes
for urban sound monitoring, including vehicle sounds, con-
struction site sounds, human-made sounds, animal sounds,
climate sounds, and rare sounds such as sirens, gunshots,
and church bells.

In these experiments, both stems (yp = 1) and artifi-
cially mixed soundscapes (yp ∈ [2, 6]) are combined, and
a sound polyphony range between yp ∈ [1, 6] is consid-
ered. The pre-defined training/validation/test split of the
USM dataset is adopted. As the only exception, a subset of
the (monophonic) stems for yp = 1 is randomly sampled
from the training and validation sets to keep the polyphony
classes approximately balanced during training. For the fi-
nal model evaluation, all soundscapes of the evaluation set
are considered.

Two issues, which complicate the SPE task, need to be
discussed. First, the USM soundscapes are composed of
foreground sounds and background sounds whose loud-
ness levels were randomly sampled from different value
ranges (compare SEC. 2.3, [32]). Some background sounds,
which have a mixing coefficient close to the lower limit
of −20 dB, are probably difficult to hear. Furthermore,
the USM dataset builds upon audio samples uploaded to
the collaborative audio database FreeSound.2 Some of the

1 https://github.com/jakobabesser/USM.
2 https://freesound.org/.
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Fig. 3. Section of the graphical user interface of the listening test
showing the Mel spectrogram of a test item. Participants are also
presented with a list of all 26 sound classes of the USM dataset
(not shown here).

audio examples exhibit unlabeled background noises in ad-
dition to the labeled sound events [33]. Such incomplete
annotations can bias the human SPE performance because
they increase the sound polyphony degree.

4 HUMAN PERFORMANCE

4.1 Listening Test
The authors conducted a listening test between Novem-

ber 2022 and January 2023 in a controlled lab environment
to assess the human performance in SPE. Participants used
closed headphones during the annotation and were guided
through the listening test in a graphical interface displayed
in a common web browser as illustrated in Fig. 3. The lis-
tening test was implemented in a locally hosted website
using Django, HTML, CSS, and JavaScript. The website
was optimized and tested for different web browsers on a
desktop computer.

4.2 Participants & Stimuli
In total, 24 participants took part in this experiment, all of

whom indicated prior experience from other listening tests.
The number of participants per age group are 3 (18–24
years), 12 (25–34 years), 6 (35–44 years), 2 (45–54 years),
and 1 (older than 55 years). The participants included part
of the scientific staff at Fraunhofer Institute for Digital
Media Technology as well as students at the Technische
Universität in Ilmenau, Germany. No material incentive
was given to participants.

All audio clips were randomly selected from the USM
evaluation set taking into account a balanced polyphony de-
gree (compare SEC. 3). The two-channel soundscapes were
down-mixed by averaging both audio channels in order to
remove any spatial cues for sound localization. A subset of
the listening test stimuli can be accessed on an accompany-
ing website [34]. All participants used closed headphones
(Beyerdynamic DT 770) and could adjust the volume at any
time during the listening test.

4.3 Training Procedure
Before starting the experiment, each participant under-

went two voluntary training steps to familiarize themselves
with the audio material and the annotation task. In the first
step, participants could listen to 11 random sound stems
from each of the 26 sound classes of the USM dataset.
During playback, time-aligned visualizations of the audio
signal’s waveform and Mel spectrogram were provided.

This also allowed participants to learn a visual associ-
ation between different sound classes and their temporal-
spectral characteristics. In the second step, 11 randomly
chosen soundscapes were provided as examples each for
the polyphony degrees within yp ∈ [2, 6] in order to get
familiar with the main annotation task. All sound examples
used in the training phase were taken from the training set
of the USM dataset.

4.4 Test Procedure
For the listening test, the authors randomly selected from

the USM test a set of 90 test items, which included 15 ran-
dom isolated stems (polyphony degree of 1) and 15 random
soundscapes from each sound polyphony degree within
yp ∈ [2, 6]. From this collection, 15 test items were ran-
domly assigned to each participant while ensuring a bal-
anced distribution of polyphony degrees across all partici-
pants. In addition to the sound polyphony degree, the par-
ticipants could annotate for each test item whether they felt
certain or uncertain with their annotation. Furthermore, the
authors constantly provided a list of all sound class labels
during the annotation as reference. In total, each test item
was annotated four times.

Inspired by [14], the authors considered three types of
visual representations that were shown during the anno-
tation. During the first group of five soundscapes, no ad-
ditional visualization was shown. In the second group of
five soundscapes, a waveform plot of the soundscape was
shown. Finally, for the last group, a Mel spectrogram was
shown.

4.5 Results
4.5.1 Influence of Annotation Certainty and
Demographic Parameters

The authors first investigate the dependency between the
SPE performance of the listening test participants and the
certainty of their annotations. Fig. 4 shows in the left col-
umn the confusion matrices for SPE for all annotations [Fig.
4(a)] as well as separated between certain [Fig. 4(b)] and
uncertain [Fig. 4(c)] annotations. The right column shows
histograms over the estimation error εp = ŷp − yp with ŷp

denoting the estimated polyphony degree. It is first observed
that only up to a polyphony degree of yp = 3, the plurality
of the corresponding annotations was correct. This result is
in line with previous studies on similar auditory counting
tasks as discussed in SEC. 1.1. When considering all anno-
tations [Fig. 4(a)], the polyphony degree is underestimated
on average by εp = −0.73 (vertical line). As a contrary
trend, it was found that in 31.5% of the uncertain annota-
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Fig. 4. Confusion matrices (left column) and histograms over the
polyphony degree prediction error εP (right column) of listening
test participants for all annotations (a) and separated by certain
(b) and uncertain (c) annotations. Thicker bounding boxes indi-
cate the percentage of correct estimations per polyphony degree
(main diagonal). In the histogram plots, the dashed lines show the
average over εP, and the dotted line indicates εP = 0.

tions [Fig. 4(c)], the sound polyphony was overestimated
by εp = 1.

When looking into other annotation parameters and user
demographics, the authors found no significant correlations
between the SPE performance with the age group of the
participants (Pearson correlation coefficient of ρ = −0.31,
p > 0.05) or the training time prior to the listening test
(ρ=−0.08; p > 0.05). The type of soundscape visualization
(no visualization, waveform, or Mel spectrogram) did not
have a significant influence on the participants’ accuracy
ASPE as confirmed by a one-way ANOVA [F(2, 69) = 0.05;
p = 0.95] and by the direct feedback of the participants.
These results stand in contrast to the findings from [14], in
which annotators perform better in SED when soundscapes
were visualized as spectrograms. As mentioned in SEC. 4.2,
the listening test participants were asked only whether they
had participated in listening tests in the past, but not to
what extent they were already familiar with spectrograms.
Participants confirmed that particularly noisy sounds, such
as wind or car, are difficult to detect and count visually
based on their spectrograms.

4.5.2 Influence of Sound Characteristics
In this section, the authors aim to investigate which types

of sounds are harder to count in polyphonic soundscapes

than others. Naturally, the sound polyphony annotations
only relate to the number but not the type of audible sound
classes. As a consequence, the relationship between SPE
performance and the presence and absence of particular
sounds classes can only be investigated via an indirect ap-
proach. In the following, Nf ∈ N

+ denotes the total number
of test files used in the listening test, Na ∈ N

Nf denotes
the number of annotations per file,

(
ŷp,f

)
f ∈ N

(Na) f for
f ∈ [1, Nf] denotes the sound polyphony annotations of file
f, yp,f ∈ N

Nf denotes the true sound polyphony per test
file, and yc,f ∈ {0, 1}Nf×Nc denotes the sound class activity
per file and sound class.

First, all annotations per file are averaged over to compute
a file-level (absolute) polyphony estimation error εp,f ∈ R

Nf

as

(
εp,f

)
f = 1

(Na) f

(Na) f∑

a=1

∣∣(ŷp,f ) f,a − (yp,f ) f

∣∣ . (4)

Then, a class-level polyphony error εp,c ∈ R
Nc is com-

puted as

(
εp,c

)
c = 1

Nc

Nf∑

f =1

(
εp,f

)
f · (

yc,f
)

f,c (5)

for c ∈ [1, Nc].
Based on manual inspections of several sound examples,

the 26 sound classes of the USM dataset are categorized
into harmonic (H), transient (T), and noise-like (N) sounds
as shown in Fig. 5. Then, the authors study how the number
of active sound classes per category affect the file-level
polyphony annotation error εp,f for a given soundscape.

As a general trend, εp,f increases with increasing
polyphony degree yp (Pearson correlation coefficient of
ρ = 0.78; p < 0.001), which confirms that SPE becomes
harder for soundscapes with higher polyphony. Interest-
ingly, the number of noisy sound classes (ρ = 0.62; p <

0.001) followed by the number of transient sound classes
(ρ = 0.42; p < 0.001) have the largest influence on the SPE
performance. The authors conclude that because to their
broadband spectral characteristics, sounds from these two
sound class categories are harder to distinguish once they
overlap. In contrast, the number of harmonic sound classes
only shows a low correlation of ρ = 0.24 (p < 0.01) with
εp,f . The authors conclude that concurrent harmonic sound
events show a smaller amount of overlap because of their
sparse energy distribution along frequency.

When looking at the class-level polyphony error εp,c

shown in Fig. 5, it is observed that salient but rare sounds
such as screams, church bells, sirens, and gunshots coin-
cide with better polyphony estimation, whereas stationary
sounds such as construction site sounds (e.g., drilling or
jackhammer) correlate with worse performance. Surpris-
ingly, although most familiar to human listeners, the au-
thors observe high error values for speech and cheering.
Nevertheless, it was found that, contrary to the findings
of [15] for SED, sparse sounds (H & T) are not easier to
count than noise-like sounds (N), which is confirmed by
a one-way ANOVA with no statistically significant differ-

864 J. Audio Eng. Soc., Vol. 71, No. 12, 2023 December



PAPERS SOUND POLYPHONY ESTIMATION

Fig. 5. Class-level polyphony error εp,c sorted in ascending order.
Class names are extended by a categorization of their spectral
pattern as harmonic (H), transient (T), or noisy (N). Lower values
indicate better performance.

ence in εp,c between both groups of sound class categories
[F(1, 24) = 1.06; p = 0.31]. Surprisingly, the smallest
annotation error was observed for bird calls, which are
usually short and prominent in the mid to high frequency
spectrum.

5 MACHINE PERFORMANCE

5.1 Experimental Procedure
In these experiments, three deep neural network archi-

tectures for SPE and SET are evaluated. The architectures
range from a small convolutional neural network (CNN)
with 217,000 parameters [33], to the EfficientNetB0 archi-
tecture with 4.1 million parameters [35], to the YOLOv7
model with 37.3 million parameters [36].

The first two CNN variants described in SEC. 5.3 are
trained for both explicit SPE and implicit SPE (compare
SEC. 2). In the case of explicit SPE, each model is trained to
predict the probability distribution ŷp ∈ R

6 with ŷp ∈ [0, 1]
over all six sound polyphony classes using the categorical
cross-entropy loss function. In the case of implicit SPE,
the models are first trained for SET, i.e., to predict the
individual probabilities ŷc ∈ R

26 with ŷc ∈ [0, 1] for all 26
sound classes using the binary cross-entropy loss function.
Based on the SET results, the sound polyphony degree yp

is obtained by counting the detected sound classes with a
probability of ŷc > 0.5. The training procedure used for the
YOLOv7 models is detailed in SEC. 5.4. Here, implicit SPE

is evaluated only based on the predicted bounding boxes for
a given Mel spectrogram.

5.2 Feature Extraction
Throughout these experiments, the authors represent

monaural audio recordings sampled at 22.05 kHz with Mel
spectrograms using a hop size of 441 (20 ms), an FFT size
of 1,024 (46.4 ms), and 128 Mel bands. Logarithmic magni-
tude scaling is applied to reduce the overall dynamic range
between salient foreground and subtle background sounds.
As a final step, the Mel spectrograms is normalized to the
range [0, 1].

5.3 Convolutional Network Variants
The “Visual Geometry Group (VGG)-like” (VGG) model

was used for SED in [33]. It contains six convolutional lay-
ers with an increasing number of filters from 32 to 128,
a kernel size of 3 × 3, and intermediate max pooling op-
erations. Global mean and max pooling are applied to the
final feature map and concatenated as input to the final two
dense layers. The model size is 217,000 parameters.

The authors further included the Pretrained Audio Neu-
ral Network (PANN) embeddings [37] because they have
achieved state-of-the-art performance for sound event tag-
ging on the AudioSet dataset [38]. They used the pre-trained
“CNN14” model, which is composed of 12 convolutional
layers and two dense layers. The 512-dimensional embed-
ding vectors are used as input for a simple two-layer multi-
layer perceptron (MLP) model, which includes a dense layer
with 128 neurons, a rectified linear unit activation function,
and a final dense layer for classification. The MLP model
has around 66,000 trainable parameters.

The EfficientNet architectures [35] were derived by si-
multaneously scaling the width, depth, and resolution of
existing CNN architectures using a fixed convolution co-
efficient as a power to three constant values, while sat-
isfying network complexity constraints. In these exper-
iments, the authors test the EfficientNetB0 architecture,
which combines regular convolutional layers with seven
mobile inverted bottleneck layers that combine depth-wise
separable convolutions and residual connections [39]. Two
model variants are compared: The first variant (EffNet)
is trained with random initial weights. The second vari-
ant (EffNetIN) is first pre-trained on the ImageNet [40]
dataset for visual object recognition before all model layers
are fine-tuned using the USM dataset.

Both CNN architectures were trained over 200 epochs
using the Adam optimizer with a learning rate of 0.001.
During training, the authors apply grid distortion (as im-
plemented in the Albumentations Python library [41]) and
SpecAugment [42] as data augmentation techniques to in-
crease the variability of the training data. Grid distortion
applies random spatial distortion locally in different areas
of an image, and SpecAugment combines time and fre-
quency masking. Both techniques are applied randomly
with a probability of 0.5.
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5.4 An Object Detection Approach
In computer vision, object detection algorithms localize

objects by estimating a surrounding rectangular bounding
box and the object category. In the audio domain, sound
events exhibit characteristic patterns in time-frequency rep-
resentations such as Mel spectrograms [10]. Unlike objects
in natural images, these patterns are not necessarily in-
variant to operations such as scaling and shifting along
frequency [43]. Although natural objects typically have
closed contours, sound events have very different temporal-
spectral shapes, ranging from sparse distributions of har-
monic or transient sounds to texture-like distributions of
ambient noise without well-defined temporal or frequency
boundaries. As a result, the concept of bounding boxes for
sound events in spectrogram representations is often ill-
defined and ambiguous.

Nevertheless, in addition to the convolutional network
variants described in SEC. 5.3, the YOLOv7 object detec-
tion algorithm [36] is used to detect sound events in Mel
spectrograms based on characteristic spectral patterns. The
network architecture includes a combination of standard
convolutional layers, depth-wise convolutional layers, and
skip connections. Additionally, YOLOv7 uses a multi-scale
approach in which images are processed at multiple scales
to improve detection accuracy. The network is trained using
a combination of the mean square error loss, which penal-
izes bounding box coordinate estimation errors, and a loss
term based on the intersection over union metric, which
penalizes the difference between the predicted and ground
truth class labels. This combination of losses measures the
localization and classification performance simultaneously.
One key aspect of YOLOv7 is the use of anchor boxes with
pre-defined aspect ratios that allow the network to detect
objects of various sizes.

5.4.1 Automatic Bounding Box Estimation
As discussed in SEC. 3, the USM dataset provides only

file-level sound class annotations without temporal bound-
aries of sound events [32]. Because a manual bounding box
annotation is too time-consuming, an automatic approach
is used to estimate bounding boxes for training the YOLO
network. The USM dataset provides the underlying sound
class stems for each soundscape. Bounding boxes are there-
fore estimated from each individual stem, and all stem-level
bounding boxes are combined as ground truth annotation
for the soundscape. Each bounding box is described by the
sound event onset time t0 and offset time t1, the lower and
upper frequency boundaries f0 and f1, and the corresponding
sound class yc. The authors apply several methods provided
by the OpenCV library [45].

First, a log-magnitude Mel spectrogram (see SEC. 5.2)
is computed, and it was normalized to a range of [0, 255].
The resolution of the obtained “spectrogram image” is also
upscaled from 128 × 216 to 640 × 640 using bicubic
interpolation. A Gaussian blur low-pass filter with a kernel
size of 7 × 7 is used to remove smaller artefacts.

Next, the spectrogram image is binarized to find contours
that characterize the specific shape of sound event patterns

Fig. 6. Example results of the automatic bounding box estimation
for a soundscape with a polyphony degree of yp = 3 (USM training
set, 10025.wav). (a) Log-magnitude scaled Mel spectrograms
are shown for the three underlying audio stems of the sound classes
gunshot (solid lines), (b) motorcycle (dashed lines), and (c) birds
(dotted lines), along with (d) the mixture.

in the Mel spectrogram. After initial experimentation, the
authors decided to use a static binarization threshold of
127. The cv2.findContours method was then used
to obtain a set of potential bounding box candidates from
the binarized image. Finally, this set is refined, and all
bounding box candidates whose area is less than the mean
area of all bounding box candidates are removed. It has
been found empirically that this dynamic threshold leads
to good results, because it removes many erroneous small
bounding box candidates and also adapts to each individual
spectrogram.

This automatic labelling procedure naturally introduces
label noise, which cannot be quantified at this stage. Around
50 training set files were manually inspected, and the esti-
mated bounding boxes were found to be more reliable for
sound classes with localized sounds such as dog barking,
gunshots, and sirens, whereas the bounding boxes for am-
bient and noise-like sounds often spanned the entire time
and frequency range.

This observation is illustrated in Fig. 6 for a training set
example with a sound polyphony degree of yp = 3. The first
three subplots [Figs. 6(a)–6(c)] show the estimated bound-
ing boxes for the three stems associated with the sound
classes gunshot, motorcycle, and birds, and the fourth plot
[Fig. 6(d)] shows the combination of all bounding boxes
as annotation for the soundscape. The estimated bounding
boxes for the noise-like motorcycle (dashed lines) and gun-
shot (solid line) sounds do not capture particular patterns
but instead cover the full frequency and time extent. In con-
trast, the bounding boxes estimated from the bird recording
well capture individual occurrences of the recurring bird
call pattern (dotted lines).
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Table 1. Method overview for SPE including the applied deep neural network architecture (second column), pre-training dataset
(third column), and number of parameters (fourth column). Results are shown for implicit and explicit SPE based on the SET metric
mAPSET as well as the accuracy scores AImpl

SPE and AExpl
SPE . ↑Upper bound AImpl

SPE value using optimal class-wise thresholds is shown for
best-performing model EffNetIN. Best results are shown in bold print.

Label Network Architecture Pre-Trained On Trainable Parameters Implicit SPE Explicit SPE

mAPSET AImpl
SPE AExpl

SPE

VGG VGG-like CNN [33] ··· 217,000 0.38 0.10 0.36
PANN PANN [37] + MLP AudioSet [38] 66,000 0.41 0.16 0.31
EffNet EfficientNetB0 [35] ··· 4.1 M 0.35 0.17 0.36
EffNetIN EfficientNetB0 [35] ImageNet [40] 4.1 M 0.44 0.19 (0.27↑) 0.41

YoloTF YOLOv7 [36] COCO [45] 37.3 M 0.29 0.30 ···
YoloT YOLOv7 [36] COCO [45] 37.3 M 0.23 0.15 ···
Humans ··· ··· ··· ··· 0.31 ···
M = million.

Fig. 7. Two approaches for bounding box estimation based on
time and frequency boundaries (YoloTF, left) and only temporal
boundaries (YoloT, right). For illustration purpose, the colored
rectangles indicate a subset of all sound events in the polyphonic
example shown in Fig. 1 including the sound classes dog barking
(dashed line) and drilling (solid line).

5.4.2 Bounding Box Strategies
In this study, the YOLOv7 network is adapted for im-

plicit SPE and first predict bounding boxes for individual
sound events in a given Mel spectrogram and then estimate
the sound polyphony degree yp from the number of unique
sound classes. Unlike bounding box estimation, SED algo-
rithms only localize sound events in time. Therefore, two
bounding box strategies as shown in Fig. 7 are compared:
The YoloTF configuration considers the bounding box es-
timation over time and frequency, whereas the YoloT con-
siders only the temporal localization of each sound event,
similar to SED.

5.4.3 Network Training & Fine-Tuning
The YOLOv7 network used for the YoloT and YoloTF

algorithms was pre-trained on the Common Objects in Con-
text (COCO) dataset [45]. The COCO dataset is a widely-
used benchmark dataset for object detection, segmentation,
and image captioning. It contains over 330,000 images with
80 object categories and over 2.5 million object instances.

After its pre-training, the YOLO-based networks were
fine-tuned on the USM training dataset based on Mel spec-
trogram “images” combined with bounding boxes esti-
mated using the procedure described in SEC. 5.4.1. The

networks were trained over 100 epochs with a batch size
of eight images per batch. As the only difference, the fre-
quency limits of all the bounding boxes used to train the
YoloT algorithm were extended to the full frequency range
of the Mel spectrogram.

6 RESULTS

Table 1 summarizes the performance of all methods
for implicit and explicit SPE. As evaluation metrics, the
SET performance is reported using the mean average pre-
cision mAP mAPSET over all 26 sound classes in the USM
dataset, and the SPE performance using the balanced accu-
racy scores AExpl

SPE and AImpl
SPE for explicit and implicit SPE,

respectively.
The human SPE performance is provided as reference in

the last row. The human performance is categorized as im-
plicit SPE because all participants confirmed that they first
tried to recognize sounds internally before counting them.
Overall, the results demonstrate that SPE is very challeng-
ing for both humans and algorithms. The best-performing
algorithms are the EffNetIN model, achieving A = 0.41
for explicit SPE, and the YoloTF, achieving A = 0.30
model for implicit SPE.

In general, explicit SPE seems to be the more promising
strategy compared to implicit SPE. Although the compared
deep neural network architectures perform very well in pat-
tern recognition tasks such as object detection in natural
images, their performance in SET is still limited, as con-
firmed by the best mean average precision of mAP = 0.44
achieved by the EffNetIN model. It is suspected that the
number of remaining classification errors at this perfor-
mance level is still too high to implicitly estimate sound
polyphony based on the sound class predictions.

Fig. 8 contrasts the SPE confusion matrices obtained
from the listening test and the best-performing EffNetIN
model. It was observed that human listeners can estimate
sound polyphony only up to a degree of yp = 3 and per-
form poorly for higher polyphony degrees. In contrast, the
EffNetIN model can distinguish better between sound-
scapes of higher polyphony degrees, which naturally also
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Fig. 8. SPE confusion matrices that contrast human performance
with the best algorithm performance in explicit SPE obtained by
the EffNetIN model (compare Table 1).

exhibit a stronger masking between different sound events.
Most of the classifications errors happened between neigh-
boring classes even though the relationship was not explic-
itly modeled in the loss function. This is in line with the
results on speaker counting [19] and musical ensemble size
classification [3].

In general, low accuracy scores of the CNN variants for
implicit SPE were observed when using a fixed binariza-
tion threshold of 0.5 (see SEC. 5.1). To determine an up-
per bound, the authors examine the best-performing model
EffNetIN and compute from the test set the optimal de-
cision thresholds for each sound class that maximize the
class-level f1 scores. These thresholds represent a hypo-
thetical best-case scenario, because in common evaluation
protocols, the test set cannot be used for hyperparame-
ter optimization. By using these class-level thresholds, the
AImpl

SPE metric improves by eight percent points from 0.19
to 0.27, which is still lower than the explicit SPE accuracy
AExpl

SPE = 0.41.
As shown by the EffNetIN model, pre-training on the

ImageNet dataset is advantageous for SPE and SET, be-
cause the network can initially learn to recognize general
two-dimensional patterns and then transfer and fine-tune
this skill toward spectral patterns of different sound classes
or polyphony levels. The PANN model is based on deep
audio embeddings that are pre-trained on the AudioSet
dataset. However, in contrast to the EffNetIN model,
only the 66,000 parameters of the last MLP layers can
be trained. Presumably, the significantly larger number of
trainable parameters (4.1 million) allows the EffNetIN
model to better fit the USM dataset.

Table 1 also shows that the CNN-based models outper-
form the YOLOv7-based models in SET. This supports
the hypothesis that the bounding box concept is ill-defined
for many sound classes, which is a key difference to ob-
jects in natural images. The annotation errors introduced
by the automatic labeling described in SEC. 5.4.1 might
be another reason for the performance difference. Com-
paring the YoloTF with the YoloT network, it is found
that the former’s ability to localize sounds not only in time
but also in frequency leads to an improvement in both SET
and SPE performance. When looking at the class-level SET
performance of the YoloTF model shown in Fig. 9, it is

Fig. 9. Class-wise average precision scores for the YoloTF net-
work for SET. Noise-like, transient, and harmonic sounds visual-
ized using the same hatch encoding as before in Fig. 5. Higher
values indicate better performance.

observed that transient sounds such as drilling, hammer,
dog barking, and gunshots on average are recognized best,
followed by harmonic sounds such as sirens and speech,
whereas it performs worst on noise-like sounds such as
motorcycle and train. Particularly for noisy sounds, differ-
ent tendencies were observed when comparing the human
and machine performance on classifying and counting dif-
ferent sound classes. Most vehicle classes (car, truck, bus,
train, airplane) and wind mostly have noise-like spectra,
which are practically impossible to detect for the YoloTF
model. Showing an average precision value of around 0.4,
sawing seems to be an exception, because it often includes
repetitive sound components. When comparing these ten-
dencies to the human class-level SPE performance in Fig.
5, it is assumed that mainly the familiarity of listeners with
particular sounds affects their ability to count them within
mixtures of multiple sounds.

7 CONCLUSION

In this paper, the authors studied the task of estimating
the sound polyphony of complex soundscapes, which were
defined as the number of audible sound classes. They first
reviewed scientific studies on both the human and machine
performance in related auditory counting tasks such as in-
strument counting and speaker counting. In order to assess
the human SPE performance, the authors carried out a lis-
tening test and studied in particular how the spectral char-
acteristics of sound classes affect the human ability to count
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them. In turn, they evaluated deep neural network architec-
tures of different complexities for the SPE task, which were
approached both explicitly by directly estimating the sound
polyphony and implicitly by first classifying the presence of
each type of sound before counting them. As an alternative
approach for sound classification, a state-of-the-art com-
puter vision algorithm was adapted for detecting objects in
images.

Human listeners were able to reliably count up to three
concurrent sound classes with the estimation error further
increasing with increasing sound polyphony. In particular
for soundscapes with a polyphony degree of up to three, lis-
teners tended to underestimate the sound polyphony for an-
notations judged to be certain and overestimated the sound
polyphony for uncertain annotations. Neither the age group,
duration of the training phase, nor the type of audio visu-
alization showed a significant influence on the SPE per-
formance. Looking at the characteristics of the sounds, it
was found that salient but infrequent sounds are the easiest
to count, presumably because they attract more attention.
The counting task becomes particularly challenging when
several noise-like and transient sound classes overlap.

By combining pre-training using the ImageNet dataset
with explicit SPE, the EffNetINmodel could outperform
the human listeners by 0.1 in accuracy and better distin-
guish between soundscapes of different sound polyphony
degrees. Although implicit SPE does not seem to be feasible
with the investigated neural network architectures, explicit
SPE seems to be more promising. In general, these results
confirm that sound classes with sparse spectral energy dis-
tribution over time (transient sounds) and frequency (har-
monic sounds) are easier to classify by machine listening
algorithms due to clearly pronounced spectral patterns.
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Gil, “Ensemble Size Classification in Colombian Andean

String Music Recordings,” in R. Kronland-Martinet, S. Ys-
tad, and M. Aramaki (Eds.), Perception, Representations,
Image, Sound, Music, pp. 60–74 (Springer, Cham, Switzer-
land, 2021).

[4] H. Cholakkal, G. Sun, F. S. Khan, and L. Shao,
“Object Counting and Instance Segmentation With Image-
Level Supervision,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pp. 12397–12405 (Long Beach, CA) (2019 Jun.).
https://doi.org/10.1109/CVPR.2019.01268.

[5] P. N. Amin, S. S. Moghe, S. N. Prabhakar, and
C. M. Nehete, “Deep Learning Based Face Mask De-
tection and Crowd Counting,” in Proceedings of the 6th
International Conference for Convergence in Technol-
ogy (I2CT), pp. 1–5 (Maharashtra, India) (2021 Jan.).
https://doi.org/10.1109/I2CT51068.2021.9417826.

[6] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and
J. P. Bello, “Scaper: A Library for Soundscape Synthesis
and Augmentation,” in Proceedings of the IEEE Workshop
on Applications of Signal Processing to Audio and Acous-
tics (WASPAA), pp. 344–348 (New Paltz, NY) (2017 Oct.).
https://doi.org/10.1109/WASPAA.2017.8170052.

[7] D. Wang and G. L. Brown (Eds.), Computational
Auditory Scene Analysis: Principles, Algorithms, and Ap-
plications (Wiley-IEEE Press, Hoboken, NJ, 2006), 1st ed.

[8] B. Gold, N. Morgan, and D. Ellis (Eds.), Speech
and Audio Signal Processing: Processing and Perception
of Speech and Music (Wiley, Hoboken, NJ, 2011), 2nd ed.
https://doi.org/10.1002/9781118142882.

[9] M. Müller, Fundamentals of Music Pro-
cessing Using Python and Jupyter Notebooks
(Springer, Cham, Switzerland, 2021), 2nd ed.
https://doi.org/10.1007/978-3-030-69808-9.

[10] T. Virtanen, M. D. Plumbley, and D. E. Ellis, Com-
putational Analysis of Sound Scenes and Events (Springer,
Cham, Switzerland, 2018), 1st ed.

[11] M. Cooke and D. P. W. Ellis, “The Audi-
tory Organization of Speech and Other Sources in
Listeners and Computational Models,” Speech Com-
mun., vol. 35, no. 3–4, pp. 141–177 (2001 Oct.).
https://doi.org/10.1016/S0167-6393(00)00078-9.

[12] T. Kawashima and T. Sato, “Perceptual Limits
in a Simulated ‘Cocktail Party,’” Atten. Percept. Psy-
chophys., vol. 77, no. 6, pp. 2108–2120 (2015 Aug.).
https://doi.org/10.3758/s13414-015-0910-9.

[13] A. Weisser, Complex Acoustic Environments: Con-
cepts, Methods and Auditory Perception, Ph.D. thesis,
Macquarie University, Sydney, Australia (2018 Sep.).
https://doi.org/10.25949/19444259.v1.

[14] M. Cartwright, A. Seals, J. Salamon, et al., “See-
ing Sound: Investigating the Effects of Visualizations and
Complexity on Crowdsourced Audio Annotations,” ACM
Human-Comput. Interact., vol. 1, paper 29 (2017 Dec.).
https://doi.org/10.1145/3134664.

[15] K. J. Piczak, “ESC: Dataset for Environ-
mental Sound Classification,” in Proceedings of
the 23rd Annual ACM Conference on Multimedia,
pp. 1015–1018 (Brisbane, Australia) (2015 Oct.).
https://doi.org/10.1145/2733373.2806390.

J. Audio Eng. Soc., Vol. 71, No. 12, 2023 December 869

https://doi.org/10.7551/mitpress/1486.001.0001
https://doi.org/10.1093/acref/9780199578108.001.0001
https://doi.org/10.1109/CVPR.2019.01268
https://doi.org/10.1109/I2CT51068.2021.9417826
https://doi.org/10.1109/WASPAA.2017.8170052
https://doi.org/10.1002/9781118142882
https://doi.org/10.1007/978-3-030-69808-9
https://doi.org/10.1016/S0167-6393(00)00078-9
https://doi.org/10.3758/s13414-015-0910-9
https://doi.org/10.1145/3134664
https://doi.org/10.7910/DVN/YDEPUT


ABEßER ET AL. PAPERS

[16] M. Schoeffler, F.-R. Stöter, H. Bayerlein, B. Edler,
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