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Label-conditioned source separation extracts the target source, specified by an input symbol,
from an input mixture track. A recently proposed label-conditioned source separation model
called Latent Source Attentive Frequency Transformation (LaSAFT)-Gated Point-Wise Con-
volutional Modulation (GPoCM)—Net introduced a block for latent source analysis called
LaSAFT. Employing LaSAFT blocks, it established state-of-the-art performance on several
tasks of the MUSDB18 benchmark. This paper enhances the LaSAFT block by exploiting
a self-conditioning method. Whereas the existing method only cares about the symbolic re-
lationships between the target source symbol and latent sources, ignoring audio content, the
new approach also considers audio content. The enhanced block computes the attention mask
conditioning on the label and the input audio feature map. Here, it is shown that the condi-
tioned U-Net employing the enhanced LaSAFT blocks outperforms the previous model. It is
also shown that the present model performs the audio-query—based separation with a slight

modification.

0 INTRODUCTION

Music source separation aims to extract sources from a
given mixture of sources. Non-negative Matrix Factoriza-
tion (NMF) [1] has been commonly used in early methods
[2, 3]. This approach is based on the idea that an audio sig-
nal can be represented with fundamental components and
their activation coefficients varying over time. Using NMF
algorithms, a music signal’s power (or magnitude) spectro-
gram can be decomposed into two non-negative matrices:
the basis and coefficient matrices. Here, the basis matrix
contains a set of basis vectors (i.e., fundamental spectral
components), and the coefficient matrix contains the acti-
vation coefficients per time frame for reconstruction.

Provided the pretrained basis vectors are grouped by
sources, a specific source s can be separated from a given
mixture with two steps. The first step is to search for the
most appropriate coefficient matrix to reconstruct the orig-
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inal mixture spectrogram while fixing the basis vectors.
Then, the spectrogram of source s was reconstructed by us-
ing the subset of the basis matrix, only consisting of basis
vectors of s and the corresponding subset of the coefficient
matrix.

Inspired by NMF, some Deep Neural Networks (DNN5s)
[4-6] have been proposed for source separation. For exam-
ple, [6] proposed a neural block called Latent Source At-
tentive Frequency Transformation (LaSAFT). A LaSAFT
block is also based on the idea that an audio sig-
nal can be represented with a weighted sum of funda-
mental components. LaSAFT blocks were adopted in a
label-conditioned source separation called LaSAFT—Gated
Point-Wise Convolutional Modulation (GPoCM)—Net [6].
LaSAFT-GPoCM-Net separates the desired source repre-
sented by an input label from the mixture, unlike the tra-
ditional source separation, in which a model separates a
predefined number of sources through a single inference
process. It exploits the NMF-inspired feature extraction
provided by each LaSAFT block, outperforming the exist-
ing label-conditioned models on the MUSDB 18 [7] dataset.
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Fig. 1. Relationship modeling: sources and latent sources. Is =
latent source.

Similar to NMF, it first extracts features of fundamental
spectral components and outputs a weighted sum of them.
However, the features of spectral components extracted by
a LaSAFT block can no longer be considered basis vec-
tors for the following reasons: they are not non-negative
or trained to reconstruct the non-negative input. The differ-
ences between them are compared in more detail in SEC.
1.2.

The authors of [6] used the term latent source instead to
refer to internal vectors. They assumed that a fundamen-
tal spectral component was from a virtual latent source. A
LaSAFT block is designed to generate feature maps per
latent source and outputs the weighted sum of them con-
sidering the input label. Here, the weights (or activation
coefficients) are determined considering the relationship
between the real source specified by the label and latent
sources. To model the relationships, they adopted the atten-
tion mechanism [8].

Fig. 1 describes an example of relationship modeling
between real sources and latent sources based on an at-
tention mechanism in a LaSAFT block, in which there are
two sources and 16 latent sources. For latent source Isy,
the LaSAFT block generates an individual feature map V.
It aggregates these feature maps conditioned on the given
source label s;. It is trained to find a set of the ideal activa-
tion coefficients W; ; for the optimal feature aggregation to
separate s;. While preserving Y W, =1, W;, j 18 trained to
have a high value if the latent source Is; is highly relevant to
s;. The LaSAFT block aggregates internal representations
by taking ka,ka.

Replacing conventional blocks used in [9] with LaSAFT
blocks improved the overall signal-to-distortion ratio (SDR)
performance of a Conditioned-U-Net (CU-Net) [10, 6] by
0.97 dB, as reported in [6]. Still, there is room for im-
provement. The existing LaSAFT block does not provide
time-varying activation coefficients, unlike NMF, forcing
the same coefficients to be shared across all the time frames.
The coefficient modeling is only globally conditioned on
the label without any local conditioning. This paper shows
that providing weights per time frame improves the ex-
isting LaSAFT-based separation frames. Inspired by self-
conditioning methods [11], the proposed attention mask
modeling is locally conditioned on an audio feature map.
Query-side and key-side self-conditioning are proposed to
provide separate weights per time frame.

With the modified LaSAFT blocks, the proposed label-
conditioned separation model outperforms the previous
LaSAFT-GPoCM-Net on several MUSDB 18 tasks. Itis also
shown that the proposed methods with a slight modification
can perform audio-query—based separation as discussed in
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SEC. 4, reporting that it outperforms the existing method
[12].

The main contributions of this paper are summarized as
follows:

e To break the rigidity of the global conditioning, an
enhanced LaSAFT block was proposed by exploiting
self-conditioning in the attention mask modeling.

e The enhanced label-conditioned separation model
outperforms the previous LaSAFT-GPoCM-Net. An
ablation study is provided to validate this approach.

¢ It is shown that this model can also perform audio-
query-based separation with a slight modification.

The remainder of this paper is organized as follows. SEC.
1 overviews the relevant literature. SEC. 2 overviews the
baseline CU-Net architecture used in this paper. SEC. 3
presents self-conditioning methods to address the limitation
of the existing method. SEC. 4 summarizes the experimental
results. This paper is concluded in SEC. 5.

1 BACKGROUND

1.1 NMF-Based Source Separation

Source separation has many applications in audio en-
gineering, such as dialogue enhancement [13] and music
source separation. For music source separation, early meth-
ods [2, 3] use NMF [1]. NMF algorithms factorize a non-
negative matrix into two non-negative matrices. They have
been widely used for source separation. The basic idea of
NMPF-based source separation is to represent an audio signal
with a set of fundamental components and their activation
coefficients varying over time. Using NMF, a signal’s power
(or magnitude) spectrogram, which is non-negative by def-
inition, can be decomposed into the basis and coefficient
matrices.

The basis matrix contains a set of basis vectors rep-
resenting elementary components in the spectral domain.
With pretrained basis vectors, the frequency spectrum at any
time frame can be approximated as a weighted sum of them.
From the source separation point of view, basis vectors are
fundamental spectral components that can reconstruct the
original spectrogram. The coefficient matrix contains the
appropriate weights per time frame for reconstruction.

Assuming all the sources are provided in the training
dataset, the basis matrix for each source can be learned.
Using such a set of pretrained basis matrices, sources can
be separated from a given mixture. The separation process
consists of analysis and reconstruction. The analysis pro-
cess creates a matrix containing all the basis vectors by con-
catenating pretrained basis matrices. Fixing the large basis
matrix, the most appropriate coefficient matrix that mini-
mizes the loss between the estimated and original mixture
spectrogram can be iteratively found. The reconstruction
process estimates the source spectrograms with the coeffi-
cient matrix. To separate source s, only the basis vectors
learned from s are used for reconstruction instead of the
whole vectors in the basis matrix. The unwanted sounds
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can be muted by eliminating the other basis vectors during
reconstruction.

1.2 NMF-Inspired DNNs

Because DNNs have shown impressive performance in
various domains, several DNN models inspired by NMF
have been proposed for source separation. For example,
DeepNMF [4] is a DNN resulting from unfolding the NMF
iterations, in which each iteration has separate parame-
ters. DeepNMF outperformed the traditional NMF-based
systems [14—16] on the DSD100 music source separation
benchmark [17] as reported in [18].

The set of basis vectors learned by NMF is often called
a spectral dictionary. [5] employed the autoencoder [19]
mechanism for spectral dictionary training instead of NMF.
They reported that the music source separation performance
of the autoencoder-based method was superior to that of
the NMF. Once spectral dictionaries are learned, [4] and
[5] follow the remaining NMF separation scheme. They
iteratively search for the appropriate coefficient matrix to
reconstruct the mixture.

On the other hand, [6] employs the attention mechanism
[20] to model the coefficients directly instead of the iterative
search. They proposed a neural block called LaSAFT, for
label-conditioned source separation (see SEC. 1.3). Similar
to the conventional neural building blocks, such as convo-
lution, it is a sub-component of a deep network. It aims
to capture spectral characteristics of the given label (e.g.,
bass) from the input audio feature map.

A LaSAFT block does not inherit NMF’s fundamental
properties, in which the input and output are non-negative
matrices. It has four main differences from NMF: (1) As
a sub-network of a deep network, it takes as input a real-
numbered intermediate feature map and the source label.
(2) Neural networks directly model the features of spec-
tral components and the appropriate activation coefficients
within a single step. (3) Activation coefficients are modeled,
conditioned on the given label. (4) Activation coefficients
are shared across time frames, whereas NMF’s coefficient
matrix contains separate activation coefficients per time
frame.

A LaSAFT block inherits the idea used in NMF of repre-
senting an audio signal with a weighted sum of fundamental
components. It first extracts latent source-dependent fea-
tures and outputs the weighted sum of them. Instead of
being searched by iterative search, the weights (or coeffi-
cients) are modeled by the attention mechanism. A detailed
explanation of LaSAFT is given in SEC. 2.2.2.

1.3 Conditioned Source Separation

Recently, many methods have been proposed for music
source separation based on deep learning approaches. A
widely used approach trains a neural network that takes
an input mixture and estimates the target sources. Whereas
some architectures [9, 21-24] estimate only a single source,
some methods [25-27] estimate multiple sources simulta-
neously.
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Unlike this approach, a conditioned separation approach
trains a network that separates the desired source, charac-
terized by additional input. For example, some studies [6,
10, 28-31] conditioned their networks on source labels,
represented as a one-hot vector or word token. If the given
label is bass, for instance, they separate the bass from the
mixture. They usually obtain a latent vector zz using an
embedding layer to represent bass in a dense embedding
space. Then conditioning mechanisms, such as the Feature-
wise Linear Modulation (FiLM) [32] or Adaptive Instance
Normalization [33], modulate internal features with z¢ to
guide networks to separate bass.

The current state-of-the-art label-conditioned separa-
tion model on the MUSDBI18 [7] benchmark is LaSAFT-
GPoCM-Net [6], which is a variant of CU-Net [10].
Whereas CU-Net uses a fully convolutional layer for each
encoding and decoding block, LaSAFT-GPoCM-Net em-
ploys convolutional layers followed by a LaSAFT block.
It also adopted the Gated Point-wise Convolutional Mod-
ulation (GPoCM) for the feature conditioning mechanism,
whereas CU-Net uses FiLM [32]. LaSAFT-GPoCM-Net is
explained in SEC. 2.

On the other hand, some models are conditioned on time-
varying information (e.g., audio or lyrics). For example,
audio-query—based separation [12] aims to extract a sound,
similar to given sample audio, from a mixture. Query-net
used in [12] encodes a query signal, an example of the
desired source to be separated, into the latent vector. The
separation network is conditioned on the latent vector with
Adaptive Instance Normalization [33] and concatenation-
based conditioning. This idea was also adopted for hierar-
chical musical instrument separation [34].

LaSAFT-GPoCM-Net were initially proposed for label-
conditioned music source separation. This paper shows that
the proposed architecture can also perform audio-query—
based source separation [12] with a slight modification. In
SEC. 4.8, the performances of the modified network and
previous method [12] are compared on the MUSDB18 [7]
benchmark.

1.4 Global and Local Conditioning

Whereas models proposed in [12, 34] use only global
conditioning, in which features are conditioned on a sin-
gle compressed latent vector, some models [35, 36] use
local conditioning, in which a time-dependent context vec-
tor is available for each time frame. [35] conditioned their
singing voice separation model on manually aligned lyrics.
[30] conditioned their model on a binary instrument activ-
ity vector. [36] proposed a unified framework for zero-shot
source separation, transcription, and syntheses. Inspired by
FiLM [32], they perform information fusion between pitch
and timbre representation, which is similar to local condi-
tioning, to separate the desired source.

The attention mask modeling used in the existing
LaSAFT [6] block is only globally conditioned on an input
label. Inspired by self-conditioning methods [11], the pro-
posed new attention mask modeling is locally conditioned
on an input audio feature map. The proposed methods can
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Fig. 2. Baseline architecture (some arrows omitted for clarity).
Conv2d = 2D Convolution; ReLU = Rectified Linear Unit.

provide separate activation coefficients per time frame by
exploiting local conditioning, whereas the existing LaSAFT
block cannot.

2 BASELINE ARCHITECTURE

This section describes the baseline architecture used in
this paper. The main difference between the baseline and
proposed model is the attention mechanism used in each
decoding block.

CU-Net of [6, 29] is used for the backbone architecture.
As shown in Fig. 2, itreceives a mixture spectrogram M and
one-hot encoding vector E that specifies the target source.
It outputs the estimated spectrogram S of the target source.
It has a generic U-Net [37], as shown on the left side of
Fig. 2.

Here, M and § are complex-valued spectrograms of
stereo audio signals adopting the Complex-as-Channel
(CaC) separation method [9]. Real and imaginary numbers
are viewed as separate channels in CaC. Thus, M and S
have four channels: left-real, left-imaginary, right-real, and
right-imaginary. The operation of the U-Net is controlled
by the right side of Fig. 2 to separate the target source E.

2.1 Generic U-Net

Generic U-Net follows the typical workflow of the orig-
inal U-Net [37]. It is an encoder-decoder network with
symmetric skip connections. The encoder maps M into
downsized spectrogram-like representations using encod-
ing blocks and down-sampling layers. The decoder receives
the intermediate results and estimates the spectrogram S
by applying decoding blocks and up-sampling layers. Fea-
ture maps of the same scales are concatenated between the
encoder and decoder. Each decoding block takes the con-
catenation of feature maps as input. These skip connections
help the U-Net recover fine-grained details of the target
[37].

Following [6], two 1 x 2 convolutions [6] are used to
control the number of channels, as shownin Fig. 2. A 1 x 2
convolution with ¢ output channels is applied, followed by
Rectified Linear Unit (ReLU) [38] to the input spectrogram
M. Every internal encoding or decoding block outputs a
spectrogram-like tensor with ¢ channels. The output of the
last decoding block is fed to another 1 x 2 convolution with
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Fig. 3. Encoding block. DenseConv2D = densely connected 2D
convolutional block; MLP = Multi-Layer Perceptron.
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Fig. 4. Densely connected 2D convolutional block (DenseC-
onv2D). Conv2d = 2D Convolution; Batch Norm = Batch Nor-
malization; ReLU = Rectified Linear Unit.

four output channels to obtain the estimated spectrogram
S. No activation function is applied to the final output.

Each down/up-sampling layer is a strided/transposed-
convolution that halves/doubles the scale in both time and
frequency domains of an input tensor. Unlike down/up-
sampling layers, each encoding/decoding block transforms
an input spectrogram-like tensor into an equally sized ten-
sor. SECS. 2.1.1 and 2.1.2 describe encoding and decoding
block architecture, respectively, in detail. Although the en-
coding phase is similar in nature to the existing U-Nets [37,
21, 9], the decoding phase is different. During decoding,
the intermediate features are modulated by the condition-
ing mechanism for the target source separation. SEC. 2.2
describes the conditioning mechanisms.

2.1.1 Encoding Block

Fig. 3 illustrates the architecture of an encoding block.
An encoding block receives spectrogram-like tensor X and
outputs the same-sized tensor Y.! It first applies a densely
connected 2D convolutional block (DenseConv2D) [39],
which is widely used in deep learning—based source sepa-
ration models [22, 9, 29]. As shown in Fig. 4, a DenseC-
onv2D consists of densely connected composite layers, in
which each layer is a stack of 2D convolution, Batch Nor-
malization [40], and ReLU [38]. The ith composite layers
take an input with i x ¢ channels and generate the output
feature map with ¢ channels.

Then, a Multi-Layer Perceptron (MLP) takes the output
of the dense block and captures the overall frequency pat-
terns observed in the mixture spectrogram. It is a stack of
two affine transformation layers with Batch Normalizations
[40] and ReL.U [38] activations. It maps an input spectral
vector in R/ to an output vector in R/ with a hidden layer,
which has [R//16] units.

Finally, the outputs of two blocks are summed as the
outcome. This architecture is the same as the building
block called Time-Frequency Convolutions with Time Dis-
tributed Fully-connected network (TFC-TDF) proposed in
[9], which showed the best performance among the five
building blocks.

! This paper uses X and Y to denote an input and output tensor
of a random block. X and Y do not have a global meaning; that is,
they have different meanings in each section.
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Fig. 5. Decoding block. DenseConv2D = densely connected
2D convolutional block; GPoCM = Gated Point-Wise Convolu-
tional Modulation; LaSAFT = Latent Source Attentive Frequency
Transformation.

2.1.2 Decoding Block

The same decoding block architecture used in [6] is
utilized. As shown in Fig. 5, the ith decoding block re-
ceives a dense embedding vector zg, the set 6; of parame-
ters for feature modulation, and a spectrogram-like tensor
X € RZOXxS Ttoutputs Y € R°"*/ Note that X has twice
as many channels as Y (i.e., 2¢ channels) because each de-
coder takes a concatenation of intermediate feature maps
(i.e., c channels from the previous layer and ¢ channels from
the corresponding encoding layer). As mentioned in SEC.
2.2, 6; is generated by the condition weight generator.

The ith decoding block first applies a DenseConv2D to X,
similar to the first phase of an encoding block. The only dif-
ference is that the first layer of the DenseConv2D receives
an input with 2¢, not ¢, because of the skip connection. The
other intermediate feature maps in the decoding block are
c-channeled, as in the encoding block.

The remaining modules, namely GPoCM and LaSAFT,
modulate internal feature maps conditioned on the label. A
GPoCM layer modulates the output of the dense block with
0;. ALaSAFT block takes the modulated feature map and zg
as input and generates a feature map considering the target
source E. Finally, the outputs of GPoCM and LaSAFT are
summed as the outcome Y of the whole block, as shown in
Fig. 5.

2.2 Conditioning Mechanisms

As in [6], GPoCM and LaSAFT is used to condition the
generic U-Net on the given label.

2.2.1 Gated Point-Wise Convolutional
Modulation

GPoCM [6] is used to globally condition an intermediate
feature map on the dense embedding vector zp € R!>¢, A
set of condition parameters are first generated for feature
modulation with the condition weight generator as shown
in the right side of Fig. 2. The condition weight generator
is a stack of two affine transformation layers with Weight
Normalizations [41] and ReLLU [38] activations. The condi-
tion weight generator takes zz and generates ® = {6}, 6,. . .,
6.}, in which L denotes the number of decoding blocks and
6; denotes a set of parameters for the ith decoding block.
As illustrated in Fig. 5, 6; is provided to the GPoCM layer
of the ith decoding block for feature modulation, in which
X is an intermediate feature map in the block.

Fig. 6 describes how a GPoCM layer modulates an in-
ternal feature map conditioned on 6,. Suppose that the goal
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Fig. 7. Workflow of the Original LaSAFT Block. Batch Norm =
Batch Normalization; ReLU = Rectified Linear Unit.

is to modulate an internal feature map X € R/ of the
ith decoding block, in which c, ¢, and f denote the number
of channels, time frames, and frequency bins, respectively.
As shown in Fig. 6, a GPoCM layer first applies a 1 x
1 convolution (also known as point-wise convolution) of
which parameters are given by 6; € R 9. Then, it ap-
plies a sigmoid function and outputs a Hadamard product
(®) of the sigmoid output and X. It should be noted that
6; was generated by the condition weight generator for the
input zg.

2.2.2 LaSAFT

A LaSAFT [6] block aims to extract features for condi-
tioned separation based on latent source analysis. Assum-
ing there are |Sy | latent sources, it aims to generate feature
maps per latent source and output the weighted sum of them
conditioning on zg. |Sr| is usually larger than the number
of real sources in the training dataset. Fig. 7 illustrates the
workflow of a LaSAFT block to generate the jth output
channel, in which the input is given by the jth channel of
X e RS (e, X[, 5, 1 ).

As shown on the right side of the figure, a LaSAFT block
has an MLP to extract |S; | spectral feature maps. Similar
to an encoding block’s MLP, it is a stack of two affine
transformation layers with Batch Normalizations [40] and
ReLU [38] activations. Whereas an encoding block’s MLP
maps an input spectral vector in R/ to an output vector in
R/ with a hidden layer of [R//16] neurons, it maps an
input vector in R/ to an output vector in RISt/ with a
hidden layer of [|S.| x R/ /167 neurons. By applying it to
the jth channel of X, V' € R"*I5:1*/ in which there are |S; |
spectral feature maps for each frame, is obtained. From the
perspective of the attention mechanism [8], V' is considered
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a value representation. The remaining task is aggregating
|S.| feature maps to obtain the output representation by
taking a weighted average of them considering the given
label E.

As shown on the left side of Fig. 7, it first applies an
affine transformation that maps zz onto the query space to
obtain Q € R in which dy is the dimensionality of the
query and key vectors. Meanwhile, it has a learnable weight
matrix K € RIStIxdein whichK[n] € R% is a representa-
tion of the nth latent source. An unnormalized relevance
score between the target and the nth latent source can be
obtained by taking the dot product of Q and each K[n].

To match the shape of V', Q and KT are duplicated to ob-
tain Q' € R™*1x% and K'T e R™*%*ISt| respectively. The
score is normalized by a softmax after being scaled by /dj,
which prevents the product from growing significantly large
[8]. It finally outputs a new representation as follows:

/K/T
)

Note that softmax(Q'K'T //dy) does not have to be com-
puted repeatedly for every channel. This term is computed
only once and shared by all the channels.

Attention (Q’, K’, V') = softmax (

3 THE PROPOSED METHODS

This section first exposes the limitation of the existing
method. Also, this section presents self-conditioning meth-
ods to provide time frame—dependent weights for latent
feature aggregation. The proposed methods enable the at-
tention mask to be conditioned not only on the label but
also on the input audio feature map. They extract audio
content—aware query/key vectors for attention by explicitly
considering the input audio features.

3.1 Limitation of the Existing Method

The existing method described in SEC. 2.2.2 only cap-
tures symbolic relations between the target source sym-
bol and latent sources while ignoring the audio contents.
This approach is sufficient only if the following assump-
tion holds: a symbolically labeled source can be repre-
sented with a certain weighted average of latent sources’
features regardless of time and audio contents. However,
the assumption is too rigid, making the existing method
less expressive.

The coefficient modeling used in the existing method is
only globally conditioned on the label without any local
conditioning. Listening mechanisms are proposed to con-
dition the attention mask modeling not only on the label
globally but also on the input audio feature map locally.
The proposed methods enable the block to compute dif-
ferent attention coefficients per time frame, whereas the
existing method forces it to use the identical score for every
frame.

3.2 Query-Side Listening

The query-side listening mechanism generates the query
vectors considering the audio contents and input condition.
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For given audio contents X € R“**/, a1 x 1 convolution
is applied to X. It receives the parameters 6, from the query
weight generator (q-weight generator in Fig. 8), as GPoCM
does. The query weight generator takes zz and generates
04, enabling the convolution to extract meaningful features
from X considering the target source.

Then a stack of a ReLU, affine transformation, and
reshape layer are applied to obtain query vectors Q' €
R>!xd a5 shown in Fig. 8. By this listening mechanism,
the model can take specific context-dependent query vec-
tors considering both the target symbol and audio contents.
However, it does not conduct any local conditioning on the
key-side. To match the shape of the query, it simply du-
plicates K7 (see SEC. 2.2.2) to obtain K'T € Rf>xIStl Tt
forces the same key vectors to all the frames, ignoring the
audio contents.

3.3 Key-Side Listening

The key-side listening mechanism first applies a 1 x
1 convolution with |S; | channels into X to extract latent
source-dependent features. After the normalization and ac-
tivation, an affine transformation maps the latent source-
dependent features to the key-side spectral space R%.

Finally, a reshape layer is applied to generate key vectors
K'T e RISt This approach can generate more flexi-
ble key vectors than the previous approach. As shown in
Fig. 9, a simple affine transformation is applied to obtain
the symbolic query vectors from zg. The symbolic query
vectors are duplicated to match the size of key vectors.
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Fig. 10. Query-key listening mechanism. conv = Convolution;
g-weight = query-weight; ReLU = Rectified Linear Unit.

3.4 Query-Key Listening

The query-key listening combines both query and key-
side listening as shown in Fig. 10.

4 EXPERIMENT

4.1 Dataset

The MUSDB18 dataset [ 7] was used. It includes 86 train-
ing, 14 validation, and 50 test multitracks. Every multitrack
is recorded as stereo waveform sampled at 44,100 Hz and
has the mixture and four sources (vocals, drums, bass, and
other). SDR [42] was reported for the evaluation metric. The
official MUSDBI18 evaluation tool?> was used. The median
SDR over all the tracks in the test set was taken following
the benchmark rule, and the mean SDR over three runs was
reported.

4.2 Training

Each model was trained to minimize the mean squared er-
ror between the complex-valued spectrograms on top of the
CaC framework [9]. An input spectrogram M is in R¥*/*/
in which fis determined by the Short-Time Fourier Trans-
form (STFT) parameters. Then, ¢ was set to 128, which
means that spectrograms with 128 time frames were used
as input for every experiment. It has four channels by the
CaC framework (see SEC. 2.1). Following [6], ¢ was set to
24, which means that every internal encoding or decoding
block outputs a spectrogram-like tensor with 24 channels.

For validation, /; loss of the ground-truth waveform and
estimated waveform, which is restored from the estimated
spectrogram, was used. For data augmentation, mixture was
generated by mixing sources from different tracks [18].
Models were trained using the Adam [43] optimizer. De-
pending on model sizes and listening mechanisms, a learn-
ing rate between 10~* and 1073 was used. More details are
available online.?

4.3 Ablation Study

An ablation study was performed to validate the superi-
ority of the proposed listening mechanism compared with
the original LaSAFT listening mechanism. The overall ex-
perimental setup of their ablation study was followed. As in

2 https://github.com/sigsep/sigsep-mus-eval.
3 https://github.com/ws-choi/LaSAFT-Net-v2.
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[6], different STFT parameters were used for their ablation
study and the state-of-the-art model development. Because
it takes a lot of resources to train the proposed architecture
with a Fast Fourier Transform (FFT) window size of 4,096
(e.g., 2 weeks with four GeForce RTX 2080tis), an FFT
window size of 2,048 and hop-size of 1,024 are used. The
existing LaSAFT-GPoCM-Net* [6] with the same STFT
parameters as the reference model is used in the ablation
study.

The baseline is similar but not identical to the reference
model. Like the reference model, the baseline has four en-
coding layers and three decoding layers (i.e., L = 3, see
SEC. 2.2). The same configuration setup of the reference
model [6] was also followed for each DenseConv2D (SEC.
2.1.1), embedding layer (SEC. 1.3), and weight generator
(SEC. 2.2.1). For each DenseConv2D, five convolution lay-
ers with kernel size 3 x 3 and a growth rate [39] of 24 were
used. For the embedding layer, the dimensionality e was
set to 32. For the weight generator, the hidden dimension is
set to eL = 32 x 3, in which L is the number of decoding
blocks. As mentioned in SEC. 2.1.1, the bottleneck factor
[6, 9] is set to 16. Two 1 x 2 convolutions [6] were also
used to control the number of channels. A 1 x 2 convolu-
tion with 24 output channels is applied, followed by ReLU
[38] to the input spectrogram M. Every internal encoding
or decoding block outputs a spectrogram-like tensor with
24 channels. The output of the last decoding block is fed to
another 1 x 2 convolution with four output channels to ob-
tain the estimated spectrogram S. Like the reference model,
every model has four encoding blocks and three decoding
blocks.

The differences between the baseline and reference
model are as follows: (1) The baseline uses LaSAFT blocks
only in the decoder, whereas [6] uses LaSAFT blocks in
the encoder as well, and (2) a light version [29] of la-
tent source-aware frequency transformation method with
|S.| = 16, whereas [6] used the original heavy analyzer
with |Sp| = 6. By using a shared affine transformation
layer (R///161 — R/ for all the latent source feature maps
instead of the last affine layer of Fig. 7, the number of
parameters can be significantly reduced, as discussed in
[29].

CU-Nets with different attention mechanisms were im-
plemented based on the baseline architecture described in
SEC. 2. The authors compare the performance of five dif-
ferent CU-Nets, namely the small version of the existing
LaSAFT-GPoCM-Net [6] (i.e., the reference model), base-
line, baseline with query-side listening, baseline with key-
side listening, and baseline with query-key listening. Each
model was trained for 400 epochs (approximately 1.3 mil-
lion steps), and the configuration with the lowest validation
loss was evaluated.

The results in Table 1 are summarized. The first row is
the SDR performance of the reference model. As shown in
the table, the baseline is slightly superior to the LaSAFT-
GPoCM-Net structure. It is observable that adding the

4 The last row of Table 1 in [6].
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Table 1. Results of the ablation study [metric: signal-to-distortion ratio (SDR), higher is better].

Model Query listen Key listen Vocals Drums Bass Other Average

LaSAFT-GPoCM-Net (small) [6] 6.96 5.84 5.24 4.54 5.64

Baseline X X 7.04 £0.05 6.06£0.83 5.14+£0.06 4.55+0.21 5.70+0.07
+ Query Listening Vv X 7.10+£0.15 6.06 £0.10 5.294+0.04 4.71 £0.04 5.79 £0.05
+ Key Listening X J 7.05£0.01 6.03£0.03 532+£0.06 4.68+0.12 5.77+0.03

Proposed architecture (small) Vv Vv 720 £0.03 6.11+£0.04 548 +0.04 4.65+0.12 5.86+ 0.03

Bold indicates the highest SDR in each source. GPoCM = Gated Point-Wise Convolutional Modulation; LaSAFT = Latent Source Attentive

Frequency Transformation.
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Fig. 11. Effect of the number of latent sources [x axis: number of
the latent sources; y axis: signal-to-distortion ratio (SDR), higher
is better].

query-side listening mechanism to each decoding block
improves performance in general. Making each decoding
block listen to the audio contents for key vector genera-
tion also enhances performance in general. The proposed
model, which employs both listening mechanisms, outper-
forms the other models on every task except for the “other”
stem.

4.4 Effect of the Number of Latent Sources

This section investigates the effect of |S.|, the num-
ber of latent sources on SDR performance. The three ar-
chitectures, namely the baseline with query-side listen-
ing (query-listen in Fig. 11), baseline with key-side lis-
tening (key-listen), and baseline with query-key listening
[query-key (proposed)], were trained with varying |S| €
{4, 8, 16, 32, 64}. The same configurations used in the pre-
vious section except for |Sy |.

Fig. 11 illustrates the effect of |S; | on the average SDR
scores over four sources of each architecture. Increasing
|S.| from 4 to 16 tends to improve the performance of ev-
ery architecture. However, having too many latent sources
degrades SDR performance, similarly to the existing latent
component analysis—based solutions in different domains
[44, 45]. Especially, models with |S.| > 16 tend to gen-
erate more artifacts. The average Signal-to-Artifacts Ratio
[42] of the three architectures is 6.24, 6.22, and 6.11 dB
when |Sy | is 16, 32, and 64, respectively.
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Fig. 12. Effect of FFT window size [x axis: FFT window size;
y axis: signal-to-distortion ratio (SDR), higher is better]. FFT =
Fast Fourier Transform.

4.5 Effect of FFT Window Size

This section investigates the effect of the FFT window
size on SDR performance. Similarly to the process de-
scribed in the previous section, the three architectures were
trained with varying FFT window size € {512, 1,024, 2,048,
4,096}. The hop-size was set to be half of the FFT window
size. The same configurations used in SEC. 4.3, including
the number of frames in an input spectrogram, except for
the STFT parameters, were used.

Fig. 12 illustrates the effect of the FFT window size on
the average SDR scores over four sources. A model with
a larger FFT window size usually performs better if every
model has the same capacity. However, it does not hold if
a model takes too high—resolution spectrogram. In Fig. 12,
models with an FFT window size of 4,096 were slightly in-
ferior to their counterpart models with an FFT window size
of 2,048. More parameters need to be stacked to improve
the SDR performance of the proposed architecture with an
FFT window size of 4,096. The following section shows
such an example.

4.6 Comparison With State-of-the-Art Models

To compare with the existing methods, a large version of
the proposed architecture or proposed architecture (large)
was trained in short. Following the large version of LaSAFT-
GPoCM-Net,> or LaSAFT-GPoCM-Net ( large), the FFT
window size was set to 4,096 and hop-size to 1,024. Many

5 The last row of Table 2 in [6].
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Table 2. Comparison with other models [metric: signal-to-distortion ratio (SDR), higher is better].

Model Conditioned? No. of params Vocals Drums Bass Other Average
X-UMX [27] X 35.6 M 6.61 6.47 5.43 4.64 5.79
D3Net [24] X N/A* 7.24 7.01 5.25 4.53 6.01
Demucs [26] X 265.7M 6.84 6.86 7.01 442 6.28
ResUNetDecouple+ [46] X >400 M 8.98 6.62 6.04 5.29 6.73
Meta-TasNet [28] i 455 M 6.40 591 5.58 4.19 5.52
AMSS-Net [47] 4 6.6 M 6.78 5.92 5.10 4.51 5.58
LaSAFT-GPoCM-Net (large) [6] i 31.5M 7.33 5.68 5.63 4.87 5.88
Proposed architecture (large) 4 79 M 7.78 £0.16 6.25£0.24 5.64 £0.20 5.09 £0.03 6.19 £ 0.02

*The official repository is opened but written in NNABLA [48].

AMSS = Audio Manipulation on a Specific Source; D3Net = densely connected multi-dilated DenseNet; GPoCM = Gated Point-Wise Convolutional
Modulation; LaSAFT = Latent Source Attentive Frequency Transformation; M = million; Meta-TasNet = meta-learning—inspired model for music
source separation; NNABLA = Neural Network Libraries; X-UMX = CrossNet-Open-Unmix.

existing methods [22, 24, 6] also used this configuration.
Also, the proposed architecture (large) has more blocks
than the models in SEC. 4.3: five encoding blocks and four
decoding blocks. For the other hyper-parameters, the same
setup as the proposed model in SEC. 4.3 was used.

LaSAFT-GPoCM-Net (large) and the proposed architec-
ture (large) follow the same differences between LaSAFT-
GPoCM-Net (small) and the baseline, mentioned in SEC.
4.3. Also, each LaSAFT block in the proposed method em-
ploys the Query-key listening mechanism, whereas each
LaSAFT block in the existing architecture does not. Each
model was trained for 2 million steps, and the configuration
with the lowest validation loss was evaluated.

Table 2 compares the performance of the proposed archi-
tecture (large) and existing models. The first row shows the
performance of X-UMX [27], an enhanced Open-Unmix
(UMX) [23]. The second row shows the performance of
densely connected multi-dilated DenseNet (D3Net) [24].
The third row shows the performance of Demux [26], a
waveform-to-waveform model with a U-Net [37] and bidi-
rectional long short-term memory [49]. The fourth shows
the performance of ResUNetDecouple+ [36]. Unlike the
models above, the fifth, sixth, and seventh rows show the
performance of label-conditioned models: meta-learning—
inspired model for music source separation (Meta-TasNet)
[28], Audio Manipulation on a Specific Source (AMSS)—
Net [47], and LaSAFT-GPoCM-Net (large) [6], respec-
tively. Meta-TasNet is a waveform-to-waveform model of
which the parameter generator predicts the parameters.
AMSS-Net was initially proposed for audio manipulation
(e.g., low-pass filter) on specific sources conditioned on
textual queries. The sixth row shows its performance re-
ported in [47], in which the authors trained it only for
source separation. The last row shows the performance of
LaSAFT-GPoCM-Net (large), the current state-of-the-art
label-conditioned model.

As shown in Table 2, the large version of the pro-
posed model outperforms the existing conditioned mod-
els. It is worthy to note that the proposed model outper-
forms LaSAFT-GPoCM-Net (large) with a smaller number
of parameters. Whereas the LaSAFT-GPoCM-Net (large)
has 31.5 million parameters, the proposed architecture has
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Fig. 13. Visualization of attention coefficients (input: mixture).

only 7.9 million parameters because of the parameter shar-
ing method [29] mentioned in SEC. 4.3. Also, its perfor-
mance is comparable to Demucs [26], which is not a label-
conditioned mode.

4.7 Qualitative Analysis

The proposed method computes individual attention co-
efficients per frame considering input audio features. To
verify this ability, attention coefficients generated by a
LaSAFT block in a trained model are visualized. The last
block of a pretrained model, which generates interesting
and easy-to-interpret attention maps, is chosen in this sec-
tion.

Fig. 13 visualizes attention coefficients of four stems
and the magnitude spectrogram of the input mixture. The
input mixture was a piece of rap music. Each plotted matrix
of a source is the attention coefficients (i.e., transposed
softmax(Q'K'T //d;) € RT*ISt1 ). A white dashed line is
plotted when the spectrum dramatically changes over time.
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Fig. 14. Visualization of attention coefficients (input: vocals).

The attention coefficients can be observed to also have a
similar evolving tendency with the audio contents.

Whereas the input used in Fig. 13 is a mixture of various
sources, the input used in Fig. 14 contains only vocals.
Because drums, bass, and other are irrelevant to the signal,
their attention coefficients are nearly constant. It is worthy
to note that the activation patterns are almost the same
across sources when there are no acoustic activities. These
patterns are learned representations of silent activity. Also,
the reverse patterns can be observed when there are sound
activities.

Finally, the results generated by LaSAFT-GPoCM-Net
and the proposed model are compared with several audio
samples in the demonstration site.°

4.8 Audio-Query-Based Separation

With a slight modification on the query-side listening,
the proposed model can perform audio-query—based source
separation [12]. As introduced in [12], audio-query—based
separation aims to extract a sound, similar to given sample
audio, from a mixture.

Whereas the proposed network is conditioned on a one-
hot vector E, audio-query—based separation is conditioned
on a sample audio track. The network was modified by
replacing the embedding layer that maps E to a dense em-
bedding vector zz € R!*¢ (see Fig. 2) with query-net [12].
Query-net extracts a dense query vector zp € R'*¢ from
sample audio. The modified model listens to audio con-
tents conditioned on a query vector instead of a symbol.
It (i.e., proposed audio query) was evaluated by using the
same evaluation scheme of [12], and the results are shown
in Table 3.

S https://ws-choi.github.io/LASAFT-Net-v2/demo/index.html.
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Table 3. Audio-query—based source separation [metric:
signal-to-distortion ratio (SDR), higher is better].

Model Vocals Drums Bass Other Average

Lee [12] 548 459 345 3.26 4.20
Proposed audio query  7.04 577 530 4.3 5.65

5 CONCLUSION

This paper exposes the limitation of the existing LaSAFT
block and proposes an enhanced LaSAFT block, intro-
ducing a combination of two proposed listening mecha-
nisms. The proposed architecture employing the enhanced
LaSAFT blocks outperforms the existing label-conditioned
separation models on the MUSDB18 benchmark. With a
slight modification, the proposed model can also perform
audio-query-based separation. For future work, one can
design a few-shot or zero-shot separation method by ex-
tending this approach.
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