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The cylindrical radial filters refer to the discrete-time realizations of the radially dependent
parts in cylindrical harmonic expansions, which are commonly described by the cylindrical
Bessel functions. An efficient and accurate design of the radial filters is crucial in spatial signal
processing applications, such as sound field synthesis and active noise control. This paper
presents a radial filter design method where the filter coefficients are analytically derived from
the time-domain representations. Time-domain sampling of the cylindrical radial functions
typically leads to spectral aliasing artifacts and degrades the accuracy of the filter, which
is mainly attributed to the unbounded discontinuities exhibited by the time-domain radial
functions. This problem is coped with by exploiting an approximation where the cylindrical
radial function is represented as a weighted sum of the radial functions in spherical harmonic
expansions. Although the spherical radial functions also exhibit discontinuities in the time
domain, the amplitude remains finite, which allows application of a recently introduced aliasing
reduction method. The proposed cylindrical radial filter is thus designed by linearly combining
the spherical radial filters with improved accuracy. The performance of the proposed cylindrical
radial filters is demonstrated by examining the spectral deviations from the original spectrum.

0 INTRODUCTION

The spherical and cylindrical harmonic representations
of wave fields are commonly used in spatial sound field
analysis and reproduction [1–6]. The directional compo-
nent of the sound field is expressed in terms of spherical
and cylindrical harmonics, whereas the radial dependencies
are described by the spherical and cylindrical Bessel and
Hankel functions in the frequency domain. For the discrete-
time modeling and manipulation of the modal representa-
tions, their respective radial functions have to be realized
as digital filters. These are referred to as the radial filters in
the remainder of this paper.

The discrete-time implementation of the radial func-
tions is often performed by sampling the frequency-domain
representations. This, however, requires the evaluation of
the Bessel and Hankel functions for every frequency bin,
which is computationally demanding. Moreover, the in-
verse discrete Fourier transform of the sampled spectrum
typically results in temporally aliased signals. It also intro-
duces a substantial amount of group delay, which makes

the frequency-domain approach not suited for real-time ap-
plications.

Recently, the time-domain realization of the radial filters
has been studied to overcome these disadvantages, with the
focus being predominantly on the spherical radial filters.
Instead of relying on traditional filter design algorithms
(e.g., least squares), the filter coefficients are derived ana-
lytically from the mathematical expressions describing the
radial functions. Since the coefficients are given in closed
form, the filter design can be carried out efficiently. This
facilitates the real-time implementation of spatial signal
processing applications.

The radial filters associated with the spherical Hankel
functions have been commonly realized as infinite impulse
response filters whose design is based on the explicit series
expansions in the Laplace domain [7–11]. For homoge-
neous sound fields, the time-domain radial functions are
described by polynomials within a finite temporal support
and equal to zero elsewhere [12–15]. Because of this tem-
poral property, the corresponding radial filters are often re-
alized as finite impulse response (FIR) filters [16–18]. The
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FIR coefficients are commonly obtained by directly sam-
pling the time-domain representations of the radial func-
tion. The spectral accuracy of such filters, however, suffers
from spectral aliasing, which originates from the infinite
bandwidth of the radial function. In [19], the temporal and
spectral artifacts resulting from the time-domain sampling
of the spherical radial filters were investigated for vary-
ing physical variables and design parameters. An improved
radial filter design was proposed in [20, 21] where the dis-
continuities occurring in the time domain are substituted by
analytically derived band-limited jump functions, thereby
reducing the aliasing artifacts. Since the band limitation
exploits polynomial interpolation kernels, the radial filter
coefficients are given in closed form.

The design of cylindrical radial filters in the time do-
main has been relatively unexplored. Although the explicit
expressions for the time-domain radial functions are known
[22], it is not trivial to achieve a reasonable spectral accu-
racy. This is mainly because of the slow decay of the spec-
trum toward high frequencies, which causes strong aliasing
artifacts if sampled in the time domain. The band limitation
approach employed for the spherical radial filters cannot be
applied here, since the amplitude of the time-domain radial
functions exhibits unbounded discontinuities. The straight-
forward solution of increasing the sampling rate comes at
the expense of computational cost. In [22], a nonlinear am-
plitude mapping was applied to the time-domain cylindrical
radial functions. Although the aliasing distortion can be ef-
fectively reduced, the nonlinear mapping function has to be
chosen heuristically.

This article proposes a new time-domain design of the
cylindrical radial filters. The FIR coefficients are given in
closed form, which is derived analytically from the time-
domain representations of the radial functions. Based on
the mathematical expressions of the spherical and cylin-
drical harmonic expansions (SECS. 1.1, 1.2, and 1.3), the
cylindrical radial functions are approximated in terms of
the spherical radial functions (SEC. 1.4). The temporal and
spectral properties of the approximation are investigated
with the focus on modal truncation and modal window-
ing. By exploiting the approximation, the cylindrical radial
filters are constructed by linearly combining the spherical
radial filters (SEC. 2). The individual spherical radial filters
are designed by employing the band-limitation approach
summarized in SEC. 2.1. The improved accuracy of the
proposed cylindrical radial filters is evaluated in SEC. 2.2
in terms of spectral deviations and normalized squared er-
rors. As a use case, the wave field synthesis (WFS) driving
functions for virtual plane waves are computed by using
the proposed cylindrical radial filters (SEC. 3). The spatial
structure and spectral properties of the synthesized sound
fields are presented, demonstrating the benefits of the pre-
sented approach.

1 CYLINDRICAL AND SPHERICAL HARMONIC
REPRESENTATIONS

This section reviews the cylindrical and spherical har-
monic expansions of plane waves. Based on these represen-

tations, the relation between the cylindrical and spherical
radial function is derived. This will be exploited for the
design of the cylindrical radial filters in SEC. 2.

The sound field of a plane wave driven by a Dirac impulse
δ(t) is considered. The sound field is evaluated at a point de-
noted by x = (r sin θ cos φ, r sin θ sin φ, r cos θ)T where r,
θ, and φ respectively denote radius, colatitude, and azimuth
angle. The plane wave is assumed to propagate parallel to
the xy-plane, where the propagating direction is denoted by
the unit vector npw = (cos φpw, sin φpw, 0)T with φpw de-
noting the azimuth angle. The time in seconds is denoted
by t, and the angular frequency is denoted by ω = 2πf, with
f denoting the frequency in Hertz. The scalar product of x
and npw is denoted by 〈x, npw〉. In frequency-domain ex-
pressions, the time harmonic term eiωt is omitted for brevity.
The imaginary unit is denoted by i, and the speed of sound
in m/s is denoted by c. In numerical simulations, the speed
of sound is set to c = 343 m/s.

1.1 Cylindrical Harmonic Expansion
In the frequency domain, the sound field of the plane

wave can be expressed in terms of cylindrical harmonics by
using the Jacobi-Anger expansion [23, p. 687],

e−i ω
c 〈x,npw〉 =

∞∑
m=−∞

i−m Jm(ω
c ρ)︸ ︷︷ ︸

frequency-domain
radial function

eim(φ−φpw), (1)

where Jm(·) denotes the cylindrical Bessel functions of the
first kind. For brevity, the radial distance from the z-axis is
denoted by ρ := r sin θ =

√
x2 + y2. The underbraced term

represents the radius-dependent and frequency-dependent
part of each cylindrical mode. The time-domain representa-
tion of the plane wave in the cylindrical harmonics domain
reads [22, Eq. (4)]

δ
(
t − 1

c 〈x, npw〉)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=−∞

c

πρ

Tm

(
ct
ρ

)
√

1 −
(

ct
ρ

)2

︸ ︷︷ ︸
time-domain

radial function

eim(φ−φpw),

∣∣∣ ct
ρ

∣∣∣ ≤ 1

0,

∣∣∣ ct
ρ

∣∣∣ > 1,

(2)

where Tm(·) denotes the Chebyshev polynomials of the first
kind. This follows from the Fourier transform relation of
the respective radial functions [24, Eq. (11.4.24)],

F−1
{
i−m Jm

(
ω
c ρ

)} =

⎧⎪⎪⎨
⎪⎪⎩

c
πρ

Tm

( ct
ρ

)
√

1−
( ct

ρ

)2
,

∣∣∣ ct
ρ

∣∣∣ ≤ 1

0,

∣∣∣ ct
ρ

∣∣∣ > 1

, (3)

with F−1{·} denoting the inverse Fourier transform. Eq.
(2) constitutes a Chebyshev series expansion of the Dirac
delta function, where 1/

√
1 − (c t/ρ)2 corresponds to the

weighting function with respect to which the Chebyshev
polynomials are orthogonal within | ct

ρ
| ≤ 1 [25, Ch. 18].

Please note that the symbol Tm( ct
ρ

) will be used to repre-
sent the Chebyshev polynomials windowed by a rectangular
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Fig. 1. Radial functions for cylindrical [(a) and (c)] and spherical [(b) and (d)] harmonic expansions. The frequency axes are scaled by
r
c , and the time axes by c

r . For the cylindrical radial functions, θ = π

2 (i.e., ρ = r) is assumed.

pulse in the remainder. The finite temporal support within
| ct

ρ
| ≤ 1 is implicitly assumed, and the expression for the

zero part (i.e., | ct
ρ
| > 1) will be omitted for brevity.

The frequency-domain and time-domain cylindrical ra-
dial functions are respectively depicted in Figs. 1(a) and
1(c) for θ = π

2 (i.e., ρ = r). It can be seen that the high-
frequency spectra (ω

c r > m) are decaying at the rate of
–10 dB/decade irrespective of the harmonic order m. At
ω = 0, the magnitude of the zeroth-order radial function
is 0 dB, whereas higher-order (m ≥ 1) radial functions ex-
hibit mth-order zero(s). The time-domain cylindrical radial
functions have a finite temporal support and exhibit two
discontinuities at |t | = r

c . As |t | → r
c , the amplitude of the

time-domain radial functions tends to infinity because of
the square root term in the denominator. Since even/odd-
order radial functions are even/odd symmetric in the time
domain, the corresponding frequency-domain radial func-
tions are purely real/imaginary [26, SEC. 9.5.3].

1.2 Spherical Harmonic Expansion
The sound field of a plane wave can be also expressed

in the spherical harmonics domain, where the frequency-
domain representation reads [1, Eq. (6.175)]

e−i ω
c 〈x,npw〉 (4)

= 4π

∞∑
n=0

i−n jn(ω
c r )︸ ︷︷ ︸

frequency-domain
radial function

n∑
m=−n

Ynm(θ,φ)Y ∗
nm(π

2 ,φpw),

with jn(·) denoting the spherical Bessel functions of
the first kind. The spherical harmonics are denoted by
Ynm(·, ·) and defined as [25, Eq. (14.30.1)]

Ynm(θ,φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)eimφ, (5)

with Pm
n (·) denoting the associated Legendre functions. The

Condon-Shortley phase term (−1)m is included in Pm
n (·).

The asterisk in the superscript (·)∗ denotes the complex
conjugate. The time-domain spherical harmonic expansion
of the plane wave reads [18]

δ
(
t − 1

c 〈x, npw〉)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π

∞∑
n=0

c

2r
Pn( c

r t)︸ ︷︷ ︸
time-domain

radial function

n∑
m=−n

Ynm(θ,φ)Y ∗
nm(π

2 ,φpw),
∣∣ c

r t
∣∣ ≤ 1

0,
∣∣ c

r t
∣∣ > 1,

(6)

where Pn(·) denote the Legendre polynomials. The individ-
ual modes satisfy the Fourier transform relation

F−1
{
i−n jn(ω

c r )
} =

{
c

2r Pn( c
r t), | c

r t | ≤ 1
0, | c

r t | > 1.
(7)

Eq. (6) constitutes the Legendre series expansion of the
Dirac delta function [25, Ch. 18]. Please note that the sym-
bol Pn( c

r t) represents a windowed Legendre polynomial
within | c

r t | ≤ 1 in the remainder. The finite temporal sup-
port is thereby assumed, and the expression for | c

r t | > 1 is
omitted.

The frequency-domain and time-domain spherical radial
functions are depicted in Figs. 1(b) and 1(d), respectively.
It can be seen that the spectra at high frequencies (ω

c r > n)
decay at the rate of –20 dB/decade (i.e., twice as steep
as for the cylindrical radial functions). At ω = 0, the
zeroth-order radial function has 0 dB gain, whereas higher-
order (n ≥ 1) radial functions exhibit nth-order zero(s). The
time-domain spherical radial functions have a finite tempo-
ral extent within |t | < r

c and exhibit discontinuities at the
edges |t | = r

c . Unlike the cylindrical case, the amplitude
of the time-domain radial functions is always finite. Since
even/odd-order radial functions are even/odd symmetric in
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Fig. 2. Approximation of the cylindrical radial functions in terms of the spherical radial functions [cf. Eq. (18)]. The maximum spherical
harmonics order N is set to 50 for the frequency domain and 10 for the time domain. A rectangular modal window (β = 0) is used in (a)
and (c), and a Kaiser-Bessel modal window (β = 4) is applied in (b) and (d).

the time domain, the corresponding frequency-domain ra-
dial functions are purely real/imaginary.

1.3 Explicit Relation of the Radial Functions
In order to derive the relation of the cylindrical and spher-

ical radial functions, the respective time-domain expansions
[Eqs. (2) and (6)] are compared for θ = π

2 (i.e., ρ = r). The
order in the double sum Eq. (6) is exchanged,

δ
(
t − 1

c 〈x, npw〉)
= 4π

∞∑
m=−∞

eim(φ−φpw)
∞∑

n=|m|

c

2r
Pn( c

r t)Ynm(π
2 , 0)Y ∗

nm(π
2 , 0).

(8)

In Eq. (8), the relations Ynm(π
2 ,φ) = Ynm(π

2 , 0)eimφ and
Y ∗

nm(π
2 ,φpw) = Ynm(π

2 , 0)e−imφpw were used, which follow
from Eq. (5). Comparing the addends (mth term) of Eq. (8)
with Eq. (2) yields

c

πr

Tm( c
r t)√

1 − ( c
r t)2

= 4π

∞∑
n=|m|

c

2r
Pn( c

r t)Ynm(π
2 , 0)Y ∗

nm(π
2 , 0) (9)

=
∞∑

n=|m|
(2n + 1)

c

2r
Pn( c

r t)
(n − m)!

(n + m)!
[Pm

n (0)]2 (10)

=
∞∑

n=|m|
(2n + 1)

c

2r
Pn( c

r t)K m
n , (11)

where Eq. (5) is exploited in the second equality. The coef-
ficient K m

n is defined as [27, Eq. (19)]

K m
n := (n − m)!

(n + m)!
[Pm

n (0)]2 (12)

=
{ (n−m−1)!!(n+m−1)!!

(n+m)!!(n−m)!! , n + m even
0, n + m odd,

(13)

where (·)!! denotes the double factorial. The second equality
in Eq. (13) follows from [23, p. 783],

Pm
n (0) =

{
(−1)

n−m
2

(n+m−1)!!
(n−m)!! , n + m even

0, n + m odd.
(14)

The double factorial coefficient K m
n can be computed re-

cursively by exploiting K 0
0 = 1 and

K m
n = n + m − 1

n + m
K m−1

n−1 (15)

K m
n = n − m − 1

n − m
K m+1

n−1 . (16)

The frequency-domain representation of Eq. (11) can be
obtained by replacing the time-domain radial functions with
their Fourier transforms [cf. Eqs. (3) and (7)], yielding [28,
Appendix]

i−m Jm(ω
c r ) =

∞∑
n=|m|

(2n + 1)i−n jn(ω
c r )K m

n . (17)

Eqs. (11) and (17) express the cylindrical radial functions
as a linear combination of the spherical radial functions
(n ≥ |m|) in the respective domain. Since the mth cylindri-
cal radial function exhibits |m|th-order zeros at ω = 0 [cf.
Fig. 1(a)], the lowest spherical radial function order used
in the approximation is n = |m|, which exhibits the same
order of zeros at ω = 0. Lower-order (n < |m|) spherical
radial functions are not used. Note from Eq. (13) that K m

n
is nonzero only if n + m is even (i.e., both n and m are ei-
ther even or odd integers). This means that Eq. (11) or Eq.
(17) expresses an even/odd-order cylindrical radial function
with even/odd-order spherical radial functions. Recall from
Figs. 1(c) and 1(d) that the time-domain radial function are
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even/odd symmetric for even/odd orders. In the frequency
domain, this corresponds to the purely real/imaginary spec-
tra of even/odd-order radial functions. The cylindrical radial
function of a given order is therefore expressed as a linear
combination of spherical radial functions having the same
time-domain symmetry, or equivalently, exhibiting purely
real/imaginary spectra.

1.4 Approximation
For practical usage, the explicit expression Eq. (11) has

to be truncated to a finite sum,

c

πr

Tm( ct
r )√

1 − ( ct
r )2

≈ c

2r

N∑
n=|m|

Wn · (2n + 1)Pn( c
r t)K m

n ,

(18)

where N denotes the maximum spherical harmonic order.
This is considered as the approximation of the cylindrical
radial functions in terms of the spherical radial functions.
The number of nonzero terms in Eq. (18) is 
 N−|m|+1

2 � with

·� denoting the ceiling function. In order to mitigate the
effect of hard modal truncation, a window Wn is introduced
for modal smoothing. This paper uses the right half of
the Kaiser-Bessel window, whose shape is conveniently
parameterizable [29]. The individual modal weights are
expressed as

Wn =
I0

(
β

√
1 − ( n−|m|

N−|m| )
2
)

I0(β)
, (19)

where n = |m|, |m| + 2, . . . , N and I0(·) denotes the
zeroth-order modified Bessel function. The parameter
β ≥ 0 determines the shape of the modal window with
β = 0 corresponding to the rectangular window.

The approximated cylindrical radial functions are de-
picted in Fig. 2. The frequency-domain approximations
without modal smoothing (β = 0) are shown in Fig. 2(a).
It can be seen that the spectra are accurate for ω

c r < N and
the spectral deviation (indicated by black curves) is mainly
found at high frequencies ( ω

c r > N ). The effect of using
a modal window (β = 4) in the frequency domain is il-
lustrated in Fig. 2(b). Although the spectral deviations are
distributed throughout a wider frequency range, the mag-
nitude spectrum (gray) is more accurately approximated.
Fig. 2(c) shows the time-domain radial functions without
modal windowing (β = 0). The time-domain deviations
exhibit strong oscillatory behavior, which agrees with the
steep high-pass filtered characteristic of their spectra [cf. the
spectral deviations depicted in Fig. 2(a)]. This is moderated
by the modal weighting (β = 4) as shown in Fig. 2(d). The
approximation using the modal smoothing is qualitatively
similar to the original radial functions [cf. Fig. 1(c)].

2 RADIAL FILTER DESIGN

This section discusses the discrete-time modeling of the
cylindrical and spherical radial functions. Since the time-
domain radial functions are of finite length [cf. Figs. 1(c)
and 1(d)], it appears reasonable to realize them as FIR fil-

Fig. 3. Time-domain sampling of the zeroth-order cylindrical ra-
dial function (fs = 48 kHz). The sampled values around t = − r

c
are shown in (a) for varying r

c . The resulting high-frequency re-
sponses are compared with the original spectrum (gray) in (b).

ters. A direct sampling of the time-domain radial functions,
however, leads to a poor modeling accuracy. This is be-
cause of the infinite bandwidth of the radial functions as
depicted in Figs. 1(a) and 1(b). Sampling these functions in
the time domain inevitably causes spectral aliasing. For the
spherical radial filters, the resulting aliasing artifacts have
been investigated in [19]. A spherical radial filter design
with reduced aliasing was recently presented in [20, 21].

The time-domain sampling of the cylindrical radial fil-
ter gives rise to more severe aliasing. This is mainly be-
cause of the slower decay of the high-frequency spectrum
as shown in Fig. 1(a). Fig. 3 depicts the artifacts that result
from time-domain sampling. Because of the diverging am-
plitude around |t | = r

c , the energy of the cylindrical radial
functions is overestimated or underestimated depending on
the fractional part of r

cTs
[cf. Fig. 3(a)], with Ts := 1

fs
de-

noting the sampling period. Moreover, since the temporal
extent of the radial functions is not properly modeled, the
notch frequencies do not match with the original spectrum
[cf. Fig. 3(b)]. This problem was reported in [22], where
the cylindrical radial filters were used for the WFS driv-
ing functions. In order to reduce the spectral deviations,
a heuristically chosen nonlinear amplitude mapping was
applied to the time-domain radial functions.

This article proposes an improved cylindrical radial fil-
ter design that combines the approximation presented in
SEC. 1.4 and the spherical radial filter design method in-
troduced in [21]. SEC. 2.1 briefly introduces the design of
spherical filters with reduced aliasing. The proposed cylin-
drical radial filters are constructed by linearly combining
these spherical radial filters (SEC. 2.2). The validity of this
approach is demonstrated by numerical results.
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2.1 Spherical Radial Filter Design
This section reviews a recent spherical radial filter de-

sign method [21]. The spectral aliasing resulting from time-
domain sampling is reduced by applying an analytical low-
pass filter to the radial functions. The FIR coefficients of
the radial filters are then obtained by sampling the low-
pass filtered expressions. Because of the attenuation of the
spectral components beyond the base band (i.e., | f | >

fs

2 ),
the resulting filters exhibit reduced aliasing artifacts. The
original idea of the analytical band limitation is primar-
ily introduced for the digital emulation of analog synthe-
sizer sounds, such as triangular, rectangular, and sawtooth
waves [30–33]. Only the zeroth-order and first-order dis-
continuities have been of interest in these applications. This
approach has also been employed for modeling nonlinear
analog systems like hard/soft clipping [34–36], where the
aliasing artifacts were reduced by applying a band lim-
itation to the first-order and second-order discontinuities.
The band limitation of higher-order discontinuities was pre-
sented in [21, 37], which was employed for the design of
spherical radial filters. Please refer to [21] for a more com-
prehensive treatment of this approach.

First, the zeroth-order case is considered where the time-
domain radial function is a rectangular pulse [cf. Fig. 1(d)].
It can be expressed as

P0( c
r t) = u(t + r

c ) − u(t − r
c ) (20)

=
∫ t

−∞

[
δ(t ′ + r

c ) − δ(t ′ − r
c )

]
dt ′, (21)

with u(·) denoting the Heaviside step function. Recall that
Pn(·) is a windowed Legendre polynomial. The amplitude
c

2r is dropped here for brevity. In the second equality, each
unit step function is expressed as an integral of a shifted
Dirac delta function δ(t ± r

c ). In order to reduce the spec-
tral components at high frequencies, Eq. (21) is convolved
(denoted by ∗) with the impulse response h(t) of a low pass
filter, yielding

h(t) ∗ P0( c
r t) =

∫ t

−∞

[
h(t ′ + r

c ) − h(t ′ − r
c )

]
dt ′ (22)

= H0(t + r
c ) − H0(t − r

c ), (23)

where H0(t) denotes the antiderivative of h(t),

H0(t) :=
∫ t

−∞
h(t ′)dt ′. (24)

The latter is called the band-limited step function in the
literature, cf. [31].

The impulse response of an ideal anti-aliasing filter is the
sinc function h(sinc)(t) = sinc( fs · t) = sin(π fst)

π fst
. The corre-

sponding band-limited step function reads [25, Eq. (6.2.10);
33, Eq. (10)]

H (sinc)
0 (t) =

∫ t

−∞
sinc( fs · t ′)dt ′ = 1

2
+ 1

π
Si(π fst), (25)

where Si(·) denotes the sine integral function. Figs. 4(a)
and 4(b) depicts the zeroth-order radial function before and
after an ideal band limitation. Because of the ideal low-pass

(a) (b) (c)

Fig. 4. The zeroth-order spherical radial filters ( r
c ≈ 4.373 · Ts).

The jump discontinuities at |t | = r
c are realized as the running

integral of different kernels. (a) Dirac delta kernel (full band).
(b) Sinc kernel (ideal band limitation). (c) Lagrange kernel (third
order).

filtering, the band-limited radial filter exhibits infinitely
long temporal extent.

Next, the first-order case (n = 1) is considered, where
the time-domain radial function is described by a linear
function within |t | < r

c . Note from Fig. 1(d) that not only
the signal but also its derivative are discontinuous at |t | = r

c .
The first-order radial function is thus expressed as

P1( c
r t) = −u(t + r

c ) − u(t − r
c )

+ c
r · (t + r

c ) · u(t + r
c ) − c

r · (t − r
c ) · u(t − r

c ).

(26)

The zeroth-order discontinuities are described by u(t ± r
c ),

and the first-order discontinuities by the ramp functions
(t ± r

c ) · u(t ± r
c ). The scaling factor c

r represents the mag-
nitude of the first-order discontinuities. Again, the ampli-
tude c

2r is omitted for brevity. Since the ramp function can
be expressed as the second-order antiderivative of δ(t),

(t ± r
c ) · u(t ± r

c ) =
t∫

−∞

( t ′∫
−∞

δ(t ′′ ± r
c )dt ′′

)
dt ′, (27)

Eq. (26) can be rewritten as

P1( c
r t) =

t∫
−∞

[
− δ(t + r

c ) − δ(t − r
c )

]
dt ′

+ c

r

t∫
−∞

( t ′∫
−∞

[
δ(t ′′ + r

c ) − δ(t ′′ − r
c )

]
dt ′′

)
dt ′.

(28)

Analogous to the zeroth-order case, a band limitation is
applied by replacing the Dirac delta functions δ(t) with h(t)
(i.e., applying a low-pass filter),

h(t) ∗ P1( c
r t) = −H0(t + r

c ) − H0(t − r
c )

+ c
r

[
H1(t + r

c ) − H1(t − r
c )

]
, (29)

where the so-called band-limited ramp function H1(t) cor-
responds to the second-order antiderivative of h(t),

H1(t) :=
t∫

−∞

( t ′∫
−∞

h(t ′′)dt ′′
)

dt ′. (30)
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This approach can be generalized to arbitrary orders n,
where the radial function is represented as a superposition
of higher-order discontinuities [21, Eq. (27)],

Pn( c
r t) =

n∑
k=0

bn(k)

k!

(c

r

)k

×
[
(−1)n−k(t + r

c )ku(t + r
c ) − (t − r

c )ku(t − r
c )

]
,

(31)

where

bn(k) = (n + k)!

(n − k)!k!2k
. (32)

The kth-order discontinuities are described by 1
k! (t ± r

c )k ·
u(t ± r

c ), which corresponds to the kth-order antiderivative
of δ(t ± r

c ). A band limitation is performed by replacing
1
k! (t ± r

c )k · u(t ± r
c ) with the kth-order antiderivative of the

prototype filter h(t), which can be derived by successive
integration,

Hk(t) =
t∫

−∞
Hk−1(t ′)dt ′. (33)

The expression for the band-limited radial functions thus
reads [21, Eq. (37)]

h(t) ∗ Pn( c
r t) (34)

=
n∑

k=0

bn(k)( c
r )k

[
(−1)n−k Hk(t + r

c ) − Hk(t − r
c )

]
.

Note that this is a continuous-time representation fully de-
scribing the time-domain behavior of the low-pass filtered
radial functions. Because of its smoother transients, Eq.
(34) can be sampled with reduced aliasing artifacts.

The spectral and temporal properties of the resulting
radial filters highly depend on the prototype filter h(t).
Because of the uncertainty principle in signal process-
ing, known as the Gabor principle [38], there is a trade-
off between band limitation and temporal compactness.
In general, longer impulse responses are likely to achieve
stronger stop-band attenuation and thus less aliasing. The
sinc kernel, for instance, constitutes an ideal low-pass filter,
which is achieved at the cost of an infinite temporal extent
[Fig. 4 (b)] and is therefore of limited practical interest. It
is thus attempted to reduce the aliasing artifacts as much
as possible while keeping the radial filters to a reason-
able length. As will be demonstrated in the following, the
compact temporal property of the radial filters can be main-
tained at the expense of moderate spectral deviations at high
frequencies.

The authors have shown in [21, 37] that the prototype
filters based on the Lagrange kernels meet the above cri-
teria. Since the impulse response of a Lagrange kernel is
described by polynomials, the antiderivatives Hk(t) can be
derived in closed form. In this study, odd-order Lagrange
polynomials are considered, which are known to be supe-
rior to even orders in terms of stop-band attenuation [39,
SEC. 5.3]. The polynomial order is denoted by M. The
Lagrange kernel is a continuous function defined within

Fig. 5. Prototype filters h(t) based on Lagrange kernels (M =
3, 15, 33) and the sinc kernel (last column).

Fig. 6. Higher-order discontinuities tk

k! u(t), the band-limited func-
tions Hk(t), and the corresponding residual functions Dk(t). The
band limitation is performed based on the fifth-order Lagrange
kernel (M = 5). For a better visualization, the residual functions
(bottom row) are depicted with differently scaled ordinates as
indicated.

M + 1 intervals of equal lengths Ts. The intervals are de-
fined by M + 2 nodal points, which are equally distributed
with respect to t = 0,

t
Ts

= −M+1
2 ,−M−1

2 , . . . , M+1
2 . (35)

For the μth interval (μ = 0, 1, . . . ,M),

t
Ts

∈ [−M+1
2 + μ, −M+1

2 + μ + 1), (36)

the impulse response is expressed as an Mth-order poly-
nomial [40],

h(t) =
∏M

ν=0,ν�=M−μ( t
Ts

+ M − μ − ν)

(M − μ)!μ!(−1)μ
. (37)

Outside these intervals (| t
Ts

| > M+1
2 ), the impulse response

is zero, thus constituting an (continuous-time) FIR filter.
Fig. 5 exemplarily depicts Lagrange kernels of different
orders M.

The antiderivatives Hk(t) are obtained by successively
integrating h(t) [cf. Eqs. (24) and (33)]. The integration
constants have to be chosen in such a way that the resulting

516 J. Audio Eng. Soc., Vol. 70, No. 6, 2022 June



PAPERS CYLINDRICAL RADIAL FILTERS

Fig. 7. The impulse responses of the proposed cylindrical radial filters (radius r = 0.5 m, sampling rate fs = 48 kHz, fifth-order Lagrange
kernel). The circles indicate the finite impulse response (FIR) coefficients (145 samples).

Hk(t) is continuous at the nodes. The following also have
to be fulfilled beyond the outermost nodes,

Hk(t) = 0,
t

Ts
< −M + 1

2
(38)

Hk(t) = t k

k!
,

t

Ts
>

M + 1

2
. (39)

As discussed in [21], these conditions can be satisfied only
for k ≤ M. The maximum antiderivative order (denoted
by K) is thus limited by the polynomial order K ≤ M.
This implies that higher-order discontinuities have to be
coped with by higher-order Lagrange kernels. This in turn
increases the number of intervals and the length of the
Lagrange kernel (M + 1) · Ts.

The higher-order antiderivatives Hk(t) of the prototype
filter are depicted in Fig. 6. The bottom row shows the
difference between the full-band and band-limited discon-
tinuities,

Dk(t) := Hk(t) − t k

k!
u(t), (40)

which are referred to as the residual functions [32]. It is
worth noting that the residual functions are also described
by piecewise polynomials between the nodal points.

The following expression is useful for practical imple-
mentations,

h(t) ∗ Pn( c
r t) = Pn( c

r t) (41)

+
n∑

k=0

bn(k)( c
r )k

[
(−1)n−k Dk(t + r

c ) − Dk(t − r
c )

]
,

which states that the band limitation can be carried out by
superposing the scaled and delayed residuals Dk(t) onto the
original time-domain radial function Pn( c

r t) around the dis-
continuities at |t | = r

c . It is worth noting that the superpo-
sition may be performed in the discrete-time domain where
the samples in the neighborhood of the discontinuities are
updated according to the sampled residual functions. The
zeroth-order spherical radial filter based on the Lagrange
kernel is shown in Fig. 4 (c). Unlike the sinc kernel case,
the radial filter has a finite length.

2.2 Cylindrical Radial Filter Design
The band limitation approach presented in SEC. 2.1 can-

not be directly applied to cylindrical radial functions be-

cause the discontinuities at |t | = r
c are of infinite mag-

nitude. The approximation Eq. (18) is employed to cir-
cumvent this problem. A low-pass–filtered cylindrical ra-
dial function is described by linearly combining the band-
limited spherical radial functions Eq. (34),

h(t) ∗ c

πr

Tm( c
r t)√

1 − ( c
r t)2

≈ c

2r

N∑
n=|m|

Wn · (2n + 1)K m
n

×
n∑

k=0

bn(k)( c
r t)k

[
(−1)n−k Hk(t + r

c ) − Hk(t − r
c )

]
.

(42)

The FIR coefficients for the cylindrical radial filters are
obtained by sampling the analytical time-domain expres-
sions. The sampling frequency is set to fs = 48 kHz. The
impulse responses of the proposed cylindrical radial fil-
ters are shown in Fig. 7. It can be seen that the compo-
nents around |t | = r

c are updated, which corresponds to the
residual functions Dk(t ± r

c ). The overshoot/undershoot is
attributed to the transient properties of the Lagrange kernel.

The design accuracy of the cylindrical radial filters is
evaluated in terms of spectral deviation defined as

Em(ω) := |Ĥm(ω) − Hm(ω)|, (43)

where Ĥm(ω) denotes the spectrum of the cylindrical ra-
dial filter and Hm(ω) the original cylindrical radial func-
tion i−m Jm(ω

c r ). Fig. 8 depicts Ĥm(ω) in gray and Em(ω)
in black. Three different radial filter design methods are
compared:

� Fig. 8(a): Sampling of the time-domain cylindri-
cal radial functions Eq. (3). The FIR length is 139
samples. The aliasing artifacts dominate the high-
frequency spectrum. For even m ≥ 2, the radial filter
fails to model the mth-order zeros at ω = 0, result-
ing in strong spectral deviation at low frequencies.
Odd-order radial filters exhibit better accuracy at
low frequencies benefiting from the odd symmetry
(first-order zero at ω = 0) of the FIR coefficients.

� Fig. 8(b): Sampling of the approximation Eq. (18).
The FIR length is 139 samples. In comparison with
Fig. 8(a), slight improvements are observed below
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Fig. 8. Modal spectra of the cylindrical radial functions (radius r = 0.5 m, sampling rate fs = 48 kHz).

10 kHz. The spectral deviation is however increased
in the neighborhood of fs

2 .
� Fig. 8(c): Sampling of the band-limited approxima-

tion Eq. (42). The band limitation is performed by
using the fifth-order Lagrange kernel. This modi-
fies six samples around each discontinuity (three
on each side of the discontinuity). The FIR length
is 145 samples. The spectral deviation is reduced
in the entire frequency range. In particular, the im-
provements at low frequencies are considerable. The
high-frequency spectrum of the cylindrical radial fil-
ter exhibits a roll-off, which is attributed to the non-
ideal low-pass filter characteristics of the Lagrange
kernel.

The accuracy of the cylindrical radial filters is further
examined in terms of normalized squared error (NSE),

NSEm := 10 log10

( ∑
l |Em(ωl)|2∑
l |Hm(ωl)|2

)
, (44)

where ωl are 216 uniformly sampled frequencies within the
Nyquist limit (−πfs < ωl ≤ πfs). Fig. 9 shows the NSE

for varying approximation order N and radius r. The results
for the sampled cylindrical radial functions are shown for
comparison (indicated by black squares). As expected, the
accuracy of the radial filter improves as the approximation
order N increases. Including more spherical radial filters
is more effective for higher m. For r = 0.5 m, doubling N
from 15 to 30 reduces the NSE by 6.9 dB for m = 0 and
by 11.2 dB for m = 15. The two subfigures demonstrate
that the design accuracy largely depends on the radius r,
which determines the spectral components beyond the base
band | f | >

fs

2 and thus has a direct impact on the resulting
aliasing artifacts. As r gets larger, higher N is required to
achieve a comparable result. If N is too small, the proposed
method might be inferior to a direct sampling of the cylin-
drical radial functions (e.g., choosing N = 15 for r = 0.5 m
and m = 13, 14, 15).

3 LOCAL WAVE FIELD SYNTHESIS

The cylindrical radial filters designed in SEC. 2 can
be used to model sound fields represented by cylindri-
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Fig. 9. Normalized squared error Eq. (44) of cylindrical radial filters. The filled circles indicate the results of the proposed method
(15th-order Lagrange kernel) for varying design parameters (radius r, cylindrical harmonic order m, maximum spherical harmonic
order N). The black squares (labeled “Cyl.”) show the results obtained by directly sampling the cylindrical radial functions without
approximation and band-limitation (low-pass filtering).

cal harmonic expansions. This not only includes con-
figurations with cylindrical symmetries but also two-
dimensional cases. In this section, the proposed cylin-
drical radial filters are employed for the implementation
of WFS.

WFS is an analytical approach for spatial sound repro-
duction using loudspeaker arrays [41, 42]. The individual
loudspeakers are driven in such a way that a desired sound
field is physically reconstructed within an extended area.
The theory of WFS is based on the high-frequency/far-field
approximation of the Kirchhoff-Helmholtz integral equa-
tion [43]. The WFS driving function for the loudspeaker
positioned at x0 = (r0 cos φ0, r0 sin φ0, 0)T is given as the
directional gradient of the desired sound field with respect
to the unit vector n0 = (cos φn0 , sin φn0 , 0)T, which is nor-
mal to the array contour and points inward the listening area.
Note that x0 and n0 are defined with different azimuth an-
gles, φ0 and φn0 , respectively. The driving function for a
plane wave reads [44, SEC. 2.4]

dWFS(x0, t)

=
[√

8π‖x0 − xref‖ max{〈n0, npw〉, 0}

δ
(
t − r0

c cos(φ0 − φpw)
) ]

∗ hpre(t), (45)

where hpre(t) denotes the so-called pre-equalization filter
whose spectrum is

√
iω/c (+10 dB/decade and +45◦ phase

shift). The Dirac delta function δ
(
t − r0

c cos(φ0 − φpw)
)

represents the sound field of the virtual plane wave evalu-
ated at the loudspeaker position x0. Eq. (45) constitutes a
driving function for 2.5-dimensional WFS where a three-
dimensional sound field is synthesized by a loudspeaker
array distributed on a two-dimensional plane (e.g., cir-
cular and rectangular arrays). In such a 2.5-dimensional
configuration, the desired sound field can be synthe-
sized with a correct amplitude only on a pre-defined
reference line. In order to keep the presented approach
as straightforward as possible, the authors avoid explic-
itly defining a reference line xref(x0). Instead, a refer-

ence point xref is chosen at which the synthesized sound
field should exhibit the correct amplitude. The ampli-
tude correction is performed by the term

√‖x0 − xref‖
in Eq. (45). The spatial window max{〈n0, npw〉, 0} =
max{cos(φn0 − φpw), 0} is a rectified cosine function
whose maximum is unity at φn0 = φpw. The readers
are referred to [45, 46] for a comprehensive treatment
of WFS.

In practical systems where real loudspeakers are
placed with finite spacing, the synthesized sound field
suffers from spatial aliasing artifacts, which predomi-
nantly occur above the so-called spatial aliasing fre-
quency. The spatial aliasing introduces spectral fluctu-
ations at high frequencies with an approximate slope
of +10 dB/decade. The frequency response of the pre-
equalization filter thus needs to be adjusted so that the slope
of +10 dB/decade is flattened out above the spatial aliasing
frequency [47, 48].

In local WFS (LWFS), the accuracy of the synthesized
sound field is improved within a small pre-defined re-
gion, which typically comes at the cost of stronger spa-
tial aliasing artifacts elsewhere. A number of LWFS ap-
proaches have been proposed so far [49–51]. This sec-
tion considers the LWFS based on spatial band limita-
tion [51], where the desired sound field is expanded with
respect to a reference point in the spherical or cylindri-
cal harmonic domain. The local accuracy of the synthe-
sized sound field is improved by applying a modal band
limitation. The size of the local sound field scales with
the maximum harmonic order. This idea was first intro-
duced for higher-order Ambisonics [52] and later em-
ployed in WFS [51]. The LWFS driving functions were
initially derived in the frequency domain [51]. Different ver-
sions of time-domain driving functions have been presented
subsequently [22, 27, 53].

In order to derive the LWFS driving function for a vir-
tual plane wave, a spatial band limitation is applied to the
time-domain cylindrical harmonic expansion Eq. (2). The
spatially band-limited plane wave is described by a trun-
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cated sum,

sMs (x, t)

=
Ms∑

m=−Ms

c

πr

Tm( c
r t)√

1 − ( c
r t)2

eim(φ−φpw) (46)

= 1

2π

2π∫
0

[ Ms∑
m=−Ms

eim(φ̄−φpw)δ
(
t − r

c cos(φ − φ̄)
) ]

dφ̄,

(47)

where Ms denotes the spatial bandwidth. The sound field
on the horizontal plane (θ = π

2 ) is considered. The second
equality Eq. (47) converts the truncated cylindrical har-
monic expansion to a plane wave expansion where the
sound field is represented as a superposition of an in-
finite number of plane waves δ

(
t − r

c cos(φ − φ̄)
)

with
φ̄ ∈ [0, 2π). The integration variable φ̄ denotes the azimuth
angle of each plane wave direction n̄ = (cos φ̄, sin φ̄, 0)T.
The truncated Fourier series

∑Ms
m=−Ms

eim(φ̄−φpw) represents
the corresponding amplitude.

The time-domain LWFS driving function is derived by
applying the conventional driving function Eq. (45) to the
individual plane waves (azimuth φ̄), which compose the
spatially band-limited version of the original plane wave
(azimuth φpw) Eq. (47), yielding

dLWFS(x′
0, t)

=
√

8πr ′
0 · hpre(t)

∗ 1

2π

2π∫
0

[( Ms∑
m=−Ms

eim(φ̄−φpw)

)( Ma∑
m=−Ma

åm(φn0 )eimφ̄

)

δ
(

t − r ′
0
c cos(φ′

0 − φ̄)
) ]

dφ̄,

(48)

where the primed variables represent the translated co-
ordinates x′

0 = (r ′
0 cos φ′

0, r ′
0 sin φ′

0, 0)T defined as x′
0 =

x0 − xref. Since the reference point is always the ex-
pansion center (i.e., the origin of the translated coordi-
nate system), the amplitude correction term simplifies to√

8π‖x0 − xref‖ = √
8π‖x′

0‖ = √
8πr ′

0. Note that the pre-
equalization filter hpre(t) is unchanged. The second sum in
Eq. (48) represents the spatial window approximated by a
truncated Fourier series with respect to φ̄ [27, Eqs. (9) and
(10)],

max{〈n0, n̄〉, 0} ≈
Ma∑

m=−Ma

åm(φn0 )eimφ̄, (49)

where the maximum order is denoted by Ma. The expansion
coefficients åm(φn0 ) are given as

åm(φn0 ) =
⎧⎨
⎩

(−1)m/2

π(1−m2) e
−imφn0 , m even

1
4 e−imφn0 , m = ±1
0, otherwise.

(50)

In Eq. (48), the spatial windowing of each plane wave is
carried out in the angular domain (φ̄) by multiplying the

truncated expansion of the spatial window Eq. (49) and
the plane wave amplitude represented by the plane wave
expansion Eq. (47). The driving function can be expressed
in terms of the spatially windowed plane wave represented
by a single sum,

dLWFS(x′
0, t)

=
√

8πr ′
0 · hpre(t)

∗ 1

2π

2π∫
0

[ M∑
m=−M

d̊m eimφ̄ δ
(
t − r ′

0
c cos(φ′

0 − φ̄)
)]

dφ̄.

(51)

The coefficient d̊m is the convolution of the respective co-
efficients in the Fourier-series domain (denoted by ∗m),

d̊m(φpw,φn0 ) = e−imφpw ∗m åm(φn0 ). (52)

The arguments (φpw and φn0 ) of d̊m are omitted in Eq. (51)
for brevity. The maximum order M of the driving function is
the sum of the modal bandwidth describing the sound field
Eq. (47) and the truncation order of the spatial window Eq.
(49), i.e., M = Ms + Ma .

The final expression for the LWFS driving function is
obtained by converting the plane wave expansion back to a
cylindrical harmonic expansion,

dLWFS(x′
0, t)

= c

√
8

πr ′
0

· hpre(t) ∗
M∑

m=−M

d̊m

Tm( c
r ′

0
t)√

1 − ( c
r ′

0
t)2

eimφ′
0 . (53)

Eq. (53) is derived by first exchanging the order of the
summation and integral in Eq. (51) and then using

1

2π

2π∫
0

eimφ̄δ
(
t − r ′

0
c cos(φ′

0 − φ̄)
)
dφ̄

= 1

2π

2π∫
0

[
eimφ̄

∞∑
l=−∞

c

πr ′
0

Tl( c
r ′

0
t)√

1 − ( c
r ′

0
t)2

eil(φ′
0−φ̄)

]
dφ̄

=
∞∑

l=−∞

c

πr ′
0

Tl( c
r ′

0
t)√

1 − ( c
r ′

0
t)2

eilφ′
0

1

2π

2π∫
0

ei(m−l)φ̄dφ̄

︸ ︷︷ ︸
δm,l

= c

πr ′
0

Tm( c
r ′

0
t)√

1 − ( c
r ′

0
t)2

eimφ′
0 ,

(54)

where the first equality substitutes each plane wave with
the time-domain expansion Eq. (2) and the second equal-
ity exploits the orthogonality of the complex exponentials
(δm,l: Kronecker delta). The LWFS driving function Eq.
(53) is expressed as a linear combination of the time-
domain cylindrical radial functions followed by filtering
and scaling.

In order to demonstrate the benefit of using the radial
filter design presented in SEC. 2, the LWFS driving func-
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Fig. 10. Local wave field synthesis (LWFS) of a plane wave impulse propagating in the direction npw = (0, −1, 0)T. Sixty monopole
loudspeakers are placed on a circle with radius r = 1.5 m. The snapshots are taken 1 ms before the planar wavefront passes the reference
point xref indicated by ‘+.’ The logarithmic amplitude of the sound field is depicted according to the colormap shown on the right. The
dynamic range of the displayed data is 70 dB, where the levels below −65 dB and above +5dB are clipped.

tions Eq. (53) are implemented, and the synthesized sound
fields are investigated by means of numerical simulation.
The virtual plane wave is assumed to propagate in the −y
direction (i.e., npw = (0,−1, 0)T), is considered. A circular
loudspeaker array, which has the radius of 1.5 m and con-
sists of 60 ideal monopole sources, is considered. An ideal
free-field condition is assumed. The cylindrical radial filters
in Eq. (53) are realized according to the approach presented
in SEC. 2.2. The sampling frequency is set to fs = 48 kHz.
The 15th-order Lagrange kernel is used for the temporal
bandwidth limitation (i.e., anti-alias filtering). The Kaiser-

Bessel window (β = 4) was used for the approximation Eq.
(42). Four different reference points are chosen:

� Center: (0, 0, 0)T

� Right: (0.75, 0, 0)T

� Front: (0, 0.75, 0)T

� Back: (0, −0.75, 0)T

The driving function Eq. (53) is computed for trans-
lated coordinate systems where the reference points coin-
cide with the origin. The cylindrical harmonic expansion
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Fig. 11. The frequency responses of the synthesized sound field on (black) and off (gray) target positions. The cylindrical radial functions
appearing in the local wave field synthesis (LWFS) driving functions Eq. (53) are realized by (a) the proposed band-limited design (based
on 15th-order Lagrange kernel) and (b) the conventional design where the time-domain approximation Eq. (18) is sampled without band
limitation. The off-target positions lie on a circle with radius 0.085 m centered at the respective reference point xref. The frequency
responses are evaluated for 20 equiangular positions.
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of the sound field is limited to Ms = 15, and the spatial
window Eq. (49) is expanded by the Fourier series up to
Ma = 20. The modal bandwidth of the driving function
is thus M = Ms + Ma = 35. The maximum spherical har-
monic order N for the approximation Eq. (18) is set to N
= 30. The pre-equalization filter hpre(t) is realized as a lin-
ear phase FIR filter (257 taps). The phase response (+45◦)
of the ideal pre-equalization filter (

√
iω/c) is omitted for

convenience.
The synthesized sound fields are shown in Fig. 10. Those

are the snapshots 1 ms before the arrival of the plane wave
at the reference point (corresponding to a propagation dis-
tance of 0.343 m). For a better visualization of the spatial
structure, the driving functions are driven with a low-pass
filtered impulse (sixth-order Butterworth filter with cut-off
frequency at 5 kHz). It can be seen that, in addition to the
original plane wave, small spatio-temporal components ar-
rive from different azimuth angles, which is attributed to the
spatial band limitation. Irrespective of the reference point,
the spatial structure of the synthesized sound field is very
similar.

The frequency responses of the synthesized sound fields
are depicted in Fig. 11. The cylindrical radial filters are im-
plemented based on the approximation Eq. (18), where the
Kaiser-Bessel window (β = 4) is used for modal smooth-
ing. The results with and without band-limitation (anti-
aliasing) are shown in Figs. 11(a) and 11(b), respectively.
The proposed method achieves a flat frequency response
from 100 Hz to 1 kHz, whereas the conventional method
(without band limitation) results in a spectral slope that
varies with the reference point. Low-frequency roll-offs are
observed in all cases, which is because of the finite spatial
extent of the loudspeaker array. Since WFS is based on the
high-frequency approximation of the Kirchhoff-Helmholtz
integral equation, the synthesized sound fields commonly
exhibit spectral deviations in low frequencies where the
wavelength is larger than the overall size of the array [48].
The thin gray lines show the frequency responses evalu-
ated on a circle (radius 85 mm) centered at each xref. These
show the spectral variability of the sound field at off-target
positions, which is influenced by the spatial band limitation
and the spatial aliasing artifacts.

4 CONCLUSION

This paper presented a time-domain design of the cylin-
drical radial filters where the radial and frequency depen-
dencies of cylindrical harmonic expansions are modeled
by FIR filters. It was shown that a straightforward time-
domain sampling of the cylindrical radial functions in-
evitably causes severe aliasing artifacts in the frequency
domain. This is attributed to the discontinuities of the time-
domain cylindrical radial functions, which exhibit an infi-
nite bandwidth. Since the discontinuities are unbounded, it
is not trivial to apply a band limitation.

In order to circumvent this problem, an approxima-
tion of the cylindrical radial functions, which is ex-
pressed as a linear combination of the spherical radial
functions, was exploited. Since a band-limited design is

known for the spherical radial filters, the cylindrical ra-
dial filters are constructed by combining the spherical ra-
dial filters with reduced aliasing artifacts. The improved
accuracy of the proposed cylindrical radial filters was
demonstrated by examining the spectral deviations and
normalized squared errors. The cylindrical radial filters
were used to implement the local wave field synthesis
based on spatial band limitation. The synthesized sound
fields were shown to benefit from the improved radial
filter design.

The presented approach is expected to be used in other
spatial signal processing tasks where cylindrical configura-
tions are under consideration or a two-dimensional model
(e.g., height invariance) of the sound field appears appro-
priate. This includes not only the numerical simulation of
acoustic fields but also applications such as sound field
analysis, sound field control, and active noise cancellation,
where a discrete-time model of the sound field has to be
plugged in to the respective algorithm.
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