
Freely available online PAPERS
M. Schwabe, S. Murgul and M. Heizmann,
“Dual Task Monophonic Singing Transcription”
J. Audio Eng. Soc., vol. 70, no. 12, pp. 1038–1047, (2022 December).
DOI: https://doi.org/10.17743/jaes.2022.0040

Dual Task Monophonic Singing Transcription

MARKUS SCHWABE,
(markus.schwabe@kit.edu)

SEBASTIAN MURGUL,
(sebastian.murgul@klangio.com)

AND MICHAEL HEIZMANN
(michael.heizmann@kit.edu)

Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology, Karlsruhe, Germany

Automatic music transcription with note level output is a current task in the field of music
information retrieval. In contrast to the piano case with very good results using available
large datasets, transcription of non-professional singing has been rarely investigated with deep
learning approaches because of the lack of note level annotated datasets. In this work, two
datasets are created concerning amateur singing recordings, one for training (synthetic singing
dataset) and one for the evaluation task (SingReal dataset). The synthetic training dataset
is generated by synthesizing a large scale of vocal melodies from artificial songs. Because
the evaluation should represent a realistic scenario, the SingReal dataset is created from real
recordings of non-professional singers. To transcribe singing notes, a new method called Dual
Task Monophonic Singing Transcription is proposed, which divides the problem of singing
transcription into the two subtasks onset detection and pitch estimation, realized by two small
independent neural networks. This approach achieves a note level F1 score of 74.19% on the
SingReal dataset, outperforming all state of the art transcription systems investigated with at
least 3.5% improvement. Furthermore, Dual Task Monophonic Singing Transcription can be
adapted very easily to the real-time transcription case.

0 INTRODUCTION

One of the most important parts of the music informa-
tion retrieval (MIR) task is the automatic music or melody
transcription. It tries to create a symbolic representation
of an input audio signal in order to generate a human-
readable note sheet. Several transcription approaches using
simple spectrogram thresholding, autocorrelation, proba-
bilistic methods, or neural networks and deep learning have
been proposed [1]. A simple but effective method for frame-
wise monophonic fundamental frequency (F0) estimation
is the YIN algorithm [2] based on the autocorrelation of
the audio signal. It is suited for music and speech, even
with high pitches. Mauch et al. [3] improved this algorithm
by a probabilistic thresholding for the pitch candidates,
which reduces short-time errors of the original YIN. This
improved algorithm is called probabilistic YIN (pYIN). In
2015, the pYIN method was extended for the note transcrip-
tion task by adding a second, independent hidden Markov
model (HMM) that models the attack, stable, and silent
states for each note [4]. This implementation is called Tony.

Recent approaches like CREPE [5] showed that data-
driven pitch tracking outperforms previous methods for
signals from various instruments. CREPE is based on a
deep convolutional neural network and operates directly
on the waveform. Preprocessed input data, like Mel-scaled
spectrograms with logarithmic magnitude in the onsets and

frames (OaF) algorithm [6], enable smaller models with less
computational resource demands. The OaF algorithm is a
dual objective transcription approach that jointly predicts
note onsets and pitches of piano signals.

Among the transcription of different instruments, one
of the most challenging tasks is the transcription of sung
melodies because the pitch evolution within one note is of-
ten unstable. Ryynänen and Klapuri [7] further processed
F0 estimation results by an HMM based acoustic and musi-
cological model to improve automatic singing transcription
(AST). A similar approach based on two models has been
developed by McLeod et al. [8] for the more challenging
polyphonic vocal transcription of a cappella music. But
both model-based transcription systems have problems in
the case of unstable pitches like vibrato. Thus, they are
inappropriate for untrained singers, for which the varying
pitch represents a main AST problem.

Therefore, Molina et al. [9] classified stable voice and un-
voiced signal regions and performed a monophonic singing
transcription based on the YIN algorithm with a hysteresis
defined on the pitch-time curve. Yang et al. [10] improved
the pYIN F0 results by means of a hierarchical HMM con-
sisting of an upper ergodic HMM for note transitions and a
pitch dynamic model for pitch fluctuations. Although some
YIN or pYIN errors can be reduced, the performance of
those approaches is mainly dependent on the vanilla YIN
or pYIN algorithm, which was outperformed by, e.g., OaF
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in the case of piano signals. A new probabilistic approach is
the Bayesian singing transcription of Nishikimi et al. [11]
that combines an F0 trajectory model with the informa-
tion of local keys and musical note rhythms in a Bayesian
hierarchical hidden semi-Markov model.

Because additional information has to be given in ad-
vance or can be estimated erroneously, most approaches are
data-driven and use neural networks. Rigaud and Radenen
[12] proposed the separate F0 estimation and segmentation
of the vocal signal by a deep neural network for both of
the tasks. The respective results are combined by a Viterbi
tracking as postprocessing. For an isolated singing voice in
popular music, Nishikimi et al. [13] developed an encoder-
decoder model with an attention mechanism. This model
represents an end-to-end approach for joint estimation of
note pitch and time values. Because it is no frame-based ap-
proach, one time error has an effect on the whole estimated
note sequence; therefore, F1 score results are low, and note
insertions, substitutions, or deletions have to be considered
in suitable evaluation metrics.

Convolutional neural networks with preprocessing are
used by Cuesta et al. [14] for the multiple F0 estimation of
vocal ensembles. Magnitude and phase representations of
the harmonic CQT are calculated and fed into the network
that can estimate more than one sung note of choir singers
per time step. Choir singers are assumed to sing stable
pitches, thus unstable pitches lead to worse performance in
that approach.

One main challenge in singing transcription is the de-
tection of onsets and offsets; therefore, Fu and Su [15]
improved the note segmentation of monophonic singing
signals by a hierarchical classification. They defined the
states silence, activation, onset, or offset and estimated the
sequence of states based on several input representations
and a residual network. During postprocessing, the state
sequence and a separate pitch estimation are combined for
a note level transcription. This approach was further im-
proved by Hsu and Su [16], in which the residual network
was replaced by a PyramidNet architecture. Moreover, vir-
tual adversarial training was investigated to incorporate un-
labeled data in the training process, but the performance
depends on the model and the data properties. An imple-
mentation of that approach is integrated in the MIR project
Omnizart [17].

This work presents a dual task algorithm for monophonic
amateur singing transcription. Because the combination of
time and F0 information is essential in music transcription,
a dual model with separated subtasks for onsets and pitches
inspired by [6] is used, aiming at a note level AST. Because
the evaluation of a data-driven approach needs realistic test-
ing data, SingReal, a new dataset with annotated amateur
recordings including non-professional singing character-
istics like pitch instabilities, was created. This is supple-
mented by a sufficiently large training dataset that consists
of artificially created singing recordings.

After the definition of all relevant feature extraction al-
gorithms in SEC. 1, the used singing transcription datasets
are presented in SEC. 2, including the new SingReal
dataset. The Dual Task Monophonic Singing Transcrip-

tion (DTMST) model with its components is explained in
detail in SEC. 3, and the transcription results are evaluated
in SEC. 4.

1 FEATURE EXTRACTION

The recorded discrete monophonic singing signal x[n],
separated from other music source signals, represents the
data input of this approach. If the vocal part is not recorded
separately, music source separation algorithms like Demucs
[18] or Spleeter [19] can extract this track in an additional
preprocessing step. But the impact of such an additional
step is not investigated in this work.

Firstly, the separated discrete signal x[n] is converted into
a time-frequency representation X[m, k] with time index m
and frequency index k in order to highlight characteristic
time-dependent and frequency-dependent features. A com-
mon representation for MIR algorithms is the short-time
Fourier transform (STFT) [20] XSTFT, which has a linear
frequency scale. Alternatively, XSTFT can be further pro-
cessed to calculate the Mel spectrogram

SMel[m, r ] =
K−1∑
k=0

Fr [k] · |XSTFT[m, k]|2 . (1)

This representation uses the psychoacoustic Mel scale
based on human perception [21] in the frequency dimen-
sion that is calculated by the filters Fr of a Mel filter bank.
In case of instrument transcription, Mel spectrograms lead
to comparable results as STFT spectrograms despite a mas-
sively reduced number of frequency bins [22].

Another suitable time-frequency representation for mu-
sic signals is the constant-Q transform (CQT) [23]

XCQT(m, k) =
m+�Nk/2�∑

n=m−�Nk/2�
x[n] a∗

k

[
n − m + Nk

2

]
(2)

with floor operator � · � and the window function

ak[n] = 1

Nk
w

[
n

Nk

]
e−j2π

fk
fs (3)

including the sampling rate fs and window w[n] of
frequency-dependent length Nk. With its logarithmic fre-
quency scale, the CQT ensures a constant resolution for
all octaves and therefore fits to the discrete semitones. A
modification of the CQT is the harmonic CQT (HCQT)
[24], which calculates several CQTs for different octaves
and concatenates them in a multi-dimensional representa-
tion. Consequently, the fundamental frequency in the first
channel is concatenated with its harmonics in the higher
channels in one frequency bin of the HCQT.

At a note onset, the spectrogram intensity is increasing in
the respective frequencies. In order to detect such intensity
variations in successive frames, the spectral flux [25]

�[m] =
R−1∑
r=0

max (0, S[m, r ] − Sref[m − 1, r ]) (4)

can be calculated based on an arbitrary spectrogram S with R
frequency bins and reference spectrogram Sref . In the case of

J. Audio Eng. Soc., Vol. 70, No. 12, 2022 December 1039



SCHWABE ET AL. PAPERS

the classical spectral flux, Sref equals S. Consequently, Eq.
(4) represents the sum of the positive temporal derivatives of
all frequency bins and therefore correlates with the strength
of a note onset at time index m. A revised version, which
is more sensitive to soft onsets, uses a maximum filtered
spectrogram [25],

Smax[m, r ] = max (S[m, r − 1 : r + 1]) , (5)

as reference Sref . It is called super flux.

2 SINGING TRANSCRIPTION DATASETS

Deep learning depends on the availability of large
datasets, which allow for the training of complex neural
networks. For music transcription tasks in general, there
are many datasets available. An overview over lots of com-
mon datasets available for MIR is given on the ISMIR
website.1 For singing voice, pitch tracking datasets like
MedleyDB [26] are available. Unfortunately, pitch track-
ing datasets aim at the frame-based fundamental frequen-
cies but do not contain discrete note pitches and onset or
offset annotations and are therefore not suited for note level
transcription. In [27], a dataset of karaoke recordings of
the mobile app “Smule” is presented but does not contain
note level annotations either. The Choral Singing Dataset
[28] is a collection of three pieces performed by 16 singers
of the Anton Bruckner Choir from Barcelona (Spain). This
dataset even comes with aligned MIDI files, but, still, it is
not large enough to use it for deep learning.

Two large datasets for singing transcription are CMedia2

and MIR-ST500 [29], which represent collections of 100 or
500 Chinese pop songs from YouTube with human-labeled
annotations. Unfortunately, only the mixed songs and not
the separate singing signals are available. Another large
dataset is one part of the RWC dataset [30], which is widely
used and consists of popular music recordings with English
and Japanese lyrics. But those songs are performed by pro-
fessional musicians in a professional recording studio and
hence do not meet the current needs of an amateur record-
ing dataset. Moreover, isolated singing signals are also not
available.

Because of the lack of annotated datasets of amateur
recordings, a new dataset with recordings of untrained
singers has been created in this work. In order to collect
realistic examples, a mobile app has been developed and
distributed to voluntary participants worldwide.3 After the
user has recorded their voice, it is uploaded to a server on
which a state of the art algorithm processes the file and
creates a musical score that can be viewed in an integrated
score viewer. This workflow leads to genuine recordings
because the participant uses the app for the purpose of a
transcription app.

In order to create a universally usable dataset, three kinds
of annotations are made in a postprocessing step after the

1https://ismir.net/resources/datasets/.
2https://www.music-ir.org/mirex/wiki/2020:Singing_

Transcription_from_Polyphonic_Music.
3https://klangio.com/sing2notes.
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Fig. 1. MIDI pitch distribution of the SingReal evaluation dataset
of amateur singing recordings.
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Fig. 2. Pitch distribution of the synthetic singing dataset.

user’s recording. Firstly, a musical score is transcribed man-
ually by ear and stored as a MusicXML file. Secondly, the
bars of the musical score are synchronized to the audio sig-
nal using local tempo annotations. Lastly, the MusicXML
file is translated to MIDI and corrected manually on a note
level in order to finely align each note’s timing and syn-
chronize it with the audio. The resulting dataset is called
“SingReal,” and it is used for the evaluation of amateur
singing transcription. It consists of a total of 35 singing
recordings, 18 of female and 17 of male amateur singers,
each with a duration between 5 and 60 s. The pitch distri-
bution of the SingReal dataset is visualized in Fig. 1.

For the training process, a large synthesized dataset has
been generated in this work. This approach avoids the very
time-consuming manual annotation of real recordings, sim-
ilar to the idea of Emiya et al. in [31] for a piano dataset.
Moreover, different timbres and sound characteristics can
be utilized to create well-balanced data and several styles.
In Fig. 3, the dataset generation process is visualized.

The developed synthetic singing dataset is based on a
collection of monophonic folk tunes [32] containing over
4,000 concatenated ABC notation files of melodies without
lyrics. Lyrics are included by a poetry generation dataset
[33] containing song lyrics from different artists like Adele,
Bob Marley, or Eminem. So, a variety of genres, which all
have their own vocabulary, is used to create realistic singing
data. All words of the lyrics are split by Pyphen [34], a
python library for hyphenation, into syllables that can be
assigned to the individual notes. The notes of the folk tunes
are quantized into duration steps of 1/16. To generate an
evenly distributed pitch probability in the training dataset,
the merged songs are transposed randomly with respect to
a general pitch range of 40 to 88, which represents a note

1040 J. Audio Eng. Soc., Vol. 70, No. 12, 2022 December

https://ismir.net/resources/datasets/
https://www.music-ir.org/mirex/wiki/2020:Singing_Transcription_from_Polyphonic_Music
https://www.music-ir.org/mirex/wiki/2020:Singing_Transcription_from_Polyphonic_Music
https://klangio.com/sing2notes


PAPERS DUAL TASK MONOPHONIC SINGING TRANSCRIPTION

Song Lyrics Dataset Folk Tunes Dataset

Hyphenate Lyrics Quantize Notes

Merge Notes and Lyrics

Transpose Song and Set Tempo

MusicXML Score

Synthesize Audio

Fig. 3. Schematic for the generation of a large synthesized singing
recording dataset.

range from E2 to E6. This pitch range comprises amateur
bass to amateur soprano singing ranges and the pitch range
of the SingReal dataset. The resulting pitch distribution is
visualized in Fig. 2.

In order to create diversity in MIDI note duration, a
tempo in the range of 50 to 120 bpm is sampled from a uni-
form distribution. The resulting modified synthetic song
is converted to a MusicXML score, which is then used to
synthesize a realistic singing voice audio by SinSy [35], an
HMM-based singing voice synthesis system. For a balanced
dataset distribution, an English male or female speaker is
used randomly. The heuristic weight for the Sinsy expres-
sion parameter “vibrato” is sampled from a uniform random
variable with a range from 0.5 to 1.5. For this work, 1,100
synthesized audio files with a sampling rate of 44.1 kHz and
total duration of 14.5 h have been generated. In contrast to
the real singing recordings, the synthetic audios have a bit
more stable pitches with less fluctuations or vibrato and
include less background noise. The two datasets, including
all audio files and annotations, and the code of the DTMST
model are freely available online.4

3 MODEL DESCRIPTION

The DTMST approach of this work divides the problem
of singing transcription into the two subtasks onset detec-
tion and pitch estimation, realized by two small independent
neural networks. Its architecture is visualized in Fig. 4 and
can be grouped into three main sections: preprocessing, in-
ference, and postprocessing. In the preprocessing step, the
required features are extracted from the input audio signal.
Then, the neural networks predict the current onsets and
pitches based on the logarithmic Mel spectrogram in the
inference phase. The estimated onsets are improved using
heuristics and the spectral flux. Finally, the improved onsets
are used to sample MIDI notes from the pitch estimation
output in the postprocessing step.

This approach has low resource requirements, e.g., less
than 5.2 MB of checkpoint and code size, and a flexible
input length because no fixed audio duration is necessary.

4https://github.com/klangio/dtmst.
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Fig. 4. Schematic of the Dual Task Monophonic Singing Tran-
scription (DTMST) system structure. OnsetNN = Onset Detection
Neural Network; PitchNN = Pitch Estimation Neural Network.

Furthermore, the implementation is very fast: 60 s of au-
dio take about 0.75 s computation time for preprocessing,
inference, and postprocessing. Consequently, the DTMST
approach is real-time capable.

3.1 Preprocessing
During preprocessing the required time-frequency rep-

resentations are computed from the input audio signal. Be-
cause both neural networks take the Mel spectrogram as
input representation in the inference phase, it is calculated
as introduced in SEC. 1 and employed with logarithmic
magnitude values. This is called the logarithmic Mel spec-
trogram here. The input audio signals are resampled to a
sampling rate of 16 kHz, which is common in music tran-
scription [6]. A window length of 2,048 and hop size of
512 are used for the spectrogram calculation. A total num-
ber of 229 frequency bins is used, starting at a minimal
frequency of 55 Hz. The time-dependent super flux vector
is calculated as defined in Eqs. (4) and (5) from the loga-
rithmic Mel spectrogram for the onset postprocessing step
(see SEC. 3.4).

3.2 Onset Detection Neural Network
Onsets of note candidates are estimated by the first neu-

ral network of DTMST, the Onset Detection Neural Net-
work (OnsetNN). Its architecture is visualized in Fig. 5.
The logarithmic Mel spectrogram of the full audio sig-
nal is used as input representation. OnsetNN consists of
three convolutional layers, followed by a dropout layer and
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Fig. 5. Onset detection network using logarithmic Mel spectro-
gram as input feature.
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Fig. 6. Network architecture of the pitch estimation neural network
with logarithmic Mel spectrogram as input feature.

time-distributed dense layer. All convolution kernels have a
square shape, and the activation function used for the con-
volutional layers is Rectified Linear Unit. For the dropout
layer, a dropout rate of 0.5 is selected. The time-distributed
flatten layer is needed to reshape the dropout output into a
1D array for the dense layer, which uses a sigmoid activa-
tion function.

Binary vectors corresponding to the M spectrogram time
frames are used as labels. If the current, previous, or next
frame is an onset, the respective coordinate is “1,” and
otherwise, it is “0.” Several variations of the architecture,
input representations, and labels have been investigated. But
in most cases, they had only a small effect on the accuracy.
Detailed evaluation results can be found in SEC. 4.

3.3 Pitch Estimation Neural Network
Pitches of the sung notes are estimated by the second

neural network of DTMST, Pitch Estimation Neural Net-
work (PitchNN). In contrast to frame-based pitch tracking,
the note pitches with discrete semitones and not the fun-
damental frequencies are estimated to get a musical score
quantization. Consequently, the approach aims to reliably
estimate the most accurate note pitches, regardless of a poor
singing performance with shaky pitch, which is typical for
amateur singers.

The architecture of PitchNN is shown in Fig. 6. Similar
to OnsetNN, the input is the logarithmic Mel spectrogram
of the full audio signal. PitchNN uses two convolutional
layers with Rectified Linear Unit as activation function for
feature extraction. Because spectral relations are more im-
portant than temporal ones, both convolution kernels are
oblong with shapes of 3 × 9 and 3 × 5, respectively. The
convolutional layers are followed by a dropout layer with
a dropout rate of 0.5 and time-distributed dense layer with
softmax activation function. This layer consists of 49 neu-
rons because of the considered pitch range from MIDI num-
bers 40 to 88, which represents a note range from E2 to E6.
The pitch labels are given in a 2D binary matrix of 49 pitch
bins and M time frames. Tones are often not held stable
by (untrained) singers and tend toward lower pitches in the
release phase. Therefore, the pitch labels of sung notes are
only set to “1” during the attack phase, which is the most
robust pitch detection interval.

1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Time (s)

OnsetNN Super Flux Reference

Fig. 7. Onset Detection Neural Network (OnsetNN) estimates,
super flux values, and onset references for a real singing recording
example.

3.4 Onset Postprocessing
A deep neural network is often handled as a black box

that tries to learn a mapping between input and output from
given examples. As a result, the network can sometimes
lead to uncertain behavior, which can be overcome by post-
processing its predictions using additional sanity checks.

Including the super flux in the onset postprocessing rep-
resents such a sanity check, because the local maxima of
OnsetNN are not as precise as those of the super flux in most
cases. Thereby, the super flux is calculated from the pre-
processed logarithmic Mel spectrogram and has the same
time discretization as OnsetNN. In Fig. 7, the differences
between the OnsetNN output and generally oversensitive
super flux are visualized for a real singing recording. The
exact onset time mostly corresponds to a local maximum in
the super flux curve of the audio signal, but there are more
local maxima of the super flux than onsets. Therefore, the
estimated onset times, which are determined from the On-
setNN output by comparing it with a threshold of 0.5, are
corrected to the time points with the nearest local maximum
in the super flux.

Besides the super flux, there also exist other onset
strength functions, as given in the overview in [36]. Dif-
ferent onset strength functions have been compared, as pre-
sented in SEC. 4.1, but super flux led to the best results.

After the super flux–based time aligning, a pruning step
is performed. All onsets detected up to 93.75 ms after the
previous detected onset (which corresponds to 75% of the
duration of a 16th note at 120 bpm) are interpreted as fluc-
tuations in the tone’s envelope and are therefore dropped.

3.5 Note Sampling
The note sampling step segments the outputs of the

pitch estimation and onset detection into unquantized
MIDI notes. An estimated MIDI note consists of the three
parameters start time, end time, and pitch.

To retrieve the pitch of a note detected by onset esti-
mation, the output of PitchNN is analyzed three frames
after the detected onset frame. The pitch bin with the high-
est value at this specific sampling point during the attack
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phase is taken as the note pitch. This exact sampling point
of three time frames after the onset is chosen empirically
and corresponds to a delay of 96 ms after the onset. Because
this time delay of about 75% of the duration of a 16th note
at 120 bpm represents an unrealistic fast singing, the pitch
in that frame is considered to belong to the detected onset.

The start time of the note is the estimated onset time, and
the end time of it is chosen as the start time of the following
note. Rests are not considered within a transcribed melody
because of the connected characteristic of sung melodies.
For the last note of the music piece or a separated melody,
the duration is set to a constant value of 2 s, which corre-
sponds to a whole note at 120 bpm. If the tempo is estimated
in future work, this constant duration can be adapted to a
whole note at the detected tempo very easily.

3.6 Training
For the purpose of training, the synthetic singing dataset

presented in SEC. 2 is used. Both networks are trained to-
gether by means of a combined loss function of indepen-
dent entropies; therefore, both networks are optimized inde-
pendently during only one training procedure. OnsetNN is
trained using the binary cross-entropy lb, whereas PitchNN
is trained using the categorical cross-entropy lc. The com-
bined loss of both tasks is the weighted sum of both losses

l =
T −1∑
t=0

α · lb (ô(t), oref(t)) + β · lc ( p̂(t), pref(t)) , (6)

with estimated onsets ô and pitches p̂ and their references
oref and pref , respectively. The weighting factors α and β can
be used to adjust the focus for the optimization. Because
both parts of the dual task loss converge in the same range,
both factors are set to 1. The note loss l is minimized using
the Adam optimizer [37]. To fit the data on a standard
graphic board with 6 GB of memory, a batch size of 32
is used. Because of the large size of the training dataset
and shallowness of the chosen models, the neural networks
converge within a few epochs.

4 EXPERIMENTS AND RESULTS

In this section, DTMST is evaluated on the SingReal
dataset and compared with state of the art methods. Preci-
sion, recall, and F1 score are calculated using the default
settings of mir eval [38] on the following three levels:

Onsets: An onset is considered correct if it is within a
50-ms interval to a reference onset.
Notes: A note is considered correct if its onset is correct
and the pitch is within 50 cents.
Notes with Offset: A note with correct onset and pitch is
only considered correct if also the note’s offset is within
a 50-ms interval to the reference offset.

4.1 Ablation Study
Table 1 shows the impact of different input feature spec-

trograms on the onset detection without postprocessing.

Table 1. Onset level results for various OnsetNN input
representations with different magnitude scale.

Input Scale Precision (%) Recall (%) F1 Score (%)

Mel Lin 56.99 51.70 61.97
Mel Log 72.83 71.89 72.17
CQT Lin 74.76 68.14 70.60
CQT Log 69.11 75.64 72.09
HCQT Lin 73.62 71.93 72.39
HCQT Log 74.16 73.62 73.37

CQT = constant-Q transform; HCQT = harmonic CQT;
Log = logarithmic; OnsetNN = Onset Detection Neural Network.

Table 2. Note level results for various PitchNN input
representations with different magnitude scale.

Input Scale Precision (%) Recall (%) F1 Score (%)

Mel Lin 71.66 70.17 70.72
Mel Log 74.25 72.80 73.32
CQT Lin 73.58 72.18 72.68
CQT Log 73.83 72.37 72.90
HCQT Lin 72.82 71.40 71.91
HCQT Log 71.08 69.35 70.04

CQT = constant-Q transform; HCQT = harmonic CQT;
Log = logarithmic; PitchNN = Pitch Estimation Neural Network.

Mel spectrogram with linear magnitude scale performs
worst; the others achieve F1 scores of about 72% and
are suitable inputs. Using logarithmic magnitude leads
to improvements of at least 1% compared to linear scale
for all representations. Therefore, a logarithmic magnitude
scale generally improves onset detection based on time-
frequency representations. Because the HCQT with log-
arithmic magnitude performs best in this evaluation with
an F1 score of 73.37%, additional information of concate-
nated octaves seems to help onset detection. Unfortunately,
the calculation of HCQT is very time-consuming and takes
much longer than the calculation of the logarithmic Mel
spectrogram. Therefore, the logarithmic Mel spectrogram
is used as input in this approach, as shown in Fig. 4. That
enables the real-time calculation discussed in SEC. 4.3.

For the pitch estimation, Table 2 presents the impact of
different input feature spectrograms on the estimation re-
sults. Although the F1 scores do not differ much for the in-
vestigated representations, the Mel spectrogram with loga-
rithmic magnitude leads to the best pitch estimation results.
The logarithmic magnitude does not have such a distinct ef-
fect for pitch estimation as for onset detection. In the case of
the HCQT, the logarithmic scale even leads to a decreased
F1 score. Because the HCQT has lower pitch estimation
results than the CQT, additional information about the har-
monic frequencies is not required for pitch estimation.

The impact of different onset strength functions for use
in postprocessing is given in Table 3. Functions calculated
from the logarithmic Mel spectrogram show better results
than the ones calculated from the STFT, which confirm the
better onset results with logarithmic scale in Table 1. In
the case of both input spectrograms, super flux shows an
improvement of about 1% over the classical spectral flux;
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Table 3. Onset level results for different onset strength
functions for onset correction.

Onset Function Spectrogram F1 Score (%)

No Correction ··· 72.17
Spectral Flux Log Mel 76.85
Super Flux Log Mel 77.53
Spectral Flux STFT 71.67
Super Flux STFT 72.59
Complex Domain [39] STFT 69.55

Log = logarithmic; STFT = short-time Fourier transform.

Precision Recall F1 score

20 %

40 %

60 %

80 %

100 %

No Postprocessing
Only Pruning
Fine Aligning and Pruning

Fig. 8. Evaluation of pruning and fine aligning with super flux as
postprocessing for the onset detection.

therefore, it is better suited for onset detection of singing
signals. In contrast, the use of the complex domain onset
strength function [39] yields to a decreased F1 score and
is not suitable for the considered task. Because super flux
achieves the highest onset level F1 score of 77.53%, it is
used in the DTMST implementation.

In Fig. 8, the effects of different postprocessing steps
are compared. Best results are achieved when pruning and
super flux alignment are applied. Pruning by itself does not
lead to an improvement because OnsetNN does not predict
a significant amount of too-short notes on the SingReal
dataset. But pruning is generally still useful as a sanity
check to prevent invalid note durations. A clear improve-
ment in the onset F1 score of about 4.5% is achieved by
fine-aligning the onsets by means of the nearest peak in the
super flux curve.

4.2 Transcription Evaluation
In order to evaluate the performance of the DTMST ap-

proach, the transcription results for the SingReal dataset
of real amateur singing recordings are analyzed on the
three levels Onsets, Notes, and Notes with Offset. Ta-
ble 4 compares those results of DTMST with state of
the art methods containing algorithmic (YIN), probabilis-
tic (Tony), and neural network–based approaches (CREPE,
Onsets and Frames, and Omnizart). Additionally, the mono-
phonic mode of the commercial software Melodyne (v5)
[40] is evaluated. The input audio signals are resampled
to 16 kHz for all methods except for Melodyne and Tony,

which receive the original 44.1 kHz signals, because they
yield better results with the original sampling rate.

Because YIN and CREPE estimate F0 pitch contours
in their basic versions, both were extended by a note seg-
mentation stage. Firstly, the pitch contours are rounded to
the nearest halftone step. Then pitch changes and silences
are used as note boundaries. Notes shorter than 100 ms are
discarded.

DTMST shows the best results for nearly all metrics
and outperforms the Tony algorithm, representing the best-
performing state-of-the-art method, by more than 3.5% con-
cerning the note level. For Notes with Offset, DTMST is the
best approach by a large margin of at least 18 dB. The dual-
objective approach OaF, from which the dual task approach
is inspired, has been trained for about 10,000 epochs on the
synthetic singing dataset. It has originally been designed for
polyphonic transcription of piano pieces and might have a
too-specific architecture that is not suited for singing data.
For example, it still predicts a polyphonic output that is
not reasonable for sung melodies of one singer. YIN and
CREPE results are comparable and depend on their F0 es-
timation and the used note segmentation, which can be
further improved. Nevertheless, the authors expect that the
results with improved note segmentation would stay below
Tony, which is an improved YIN algorithm.

The best neural network-based state of the art results
are achieved by Omnizart, but the F1 scores are still much
lower than DTMST. According to the different datasets
during training, these differences could result from the lack
of generalizability, which often occurs in data-driven ap-
proaches. Melodyne performs worst compared to the other
state of the art methods, although it offers a special mono-
phonic note detection mode. Because it is primarily used for
professional music postprocessing and editing, the note seg-
mentation criteria are probably focused on comprising the
whole note with attack and reverberation to enable a mean-
ingful pitch correction. Therefore, the note onsets might be
estimated too early.

4.3 Real-Time Transcription
DTMST can easily be modified to transcribe audio in

a real-time scenario. Lots of pitch tracking approaches are
not real-time capable, but several implementations like real-
time F0 estimation of human voice [41] or real-time pitch
tracking of instruments with an extended complex Kalman
filter [42] have been developed. The main advantage of
such a real-time capable transcription system is a better
user experience because of the direct feedback that can be
given to the musician while recording.

The structure of the real-time DTMST is visualized in
Fig. 9. The main difference between an online (real-time)
and offline scenario is that the incoming frames of an audio
stream are gradually accessed in the online case. Conse-
quently, there is only a limited time span available to pre-
process each frame. For a sampling rate of 16 kHz and hop
size of 512 like in this work, the available time for each
preprocessing step is 32 ms.
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Table 4. Comparison of DTMST results with state of the art methods using SingReal dataset concerning precision P, recall R,
and F1 score F1.

Onsets Notes Notes with Offset

Approach P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

YIN [2] 51.61 47.86 48.46 51.05 47.33 47.92 10.90 10.67 10.56
Tony [4] 78.13 68.01 72.30 76.22 66.39 70.56 30.00 27.12 28.37
CREPE [5] 38.95 53.07 44.31 38.75 52.71 44.05 10.64 13.73 11.85
OaF [6] 58.58 58.43 58.15 57.03 57.02 56.68 34.03 33.58 33.71
Omnizart [17] 60.87 59.97 59.82 59.41 58.60 58.41 22.55 22.57 22.34
Melodyne [40] 26.68 26.40 26.17 20.08 19.65 19.54 10.93 11.33 11.06
DTMST 78.41 77.06 77.53 75.07 73.71 74.19 52.26 51.50 51.76

DTMST = Dual Task Monophonic Singing Transcription; OaF = Onsets and Frames.

Fig. 9. Structure of Dual Task Monophonic Singing Transcription
(DTMST) for real-time processing.

Because Mel spectrograms can be calculated frame by
frame, the calculation is real-time capable when a circular
buffer is used. Each column of the Mel spectrogram is
calculated by means of the magnitude of the fast Fourier
transform and a precalculated Mel filter bank. In order to
follow the real-time constraint, only preprocessing is done
in the audio computing thread. The preprocessing of each
audio frame takes less than 8 ms in average using a Dell
XPS 13 2018 (9370) with an Intel Core i7-8550U.

Inference and postprocessing are done in a separate
computing thread and are based on the complete previous
singing recording. Therefore, they do not have to comply
with the real-time constraint of the audio thread because
the transcription can be done with an independent repe-
tition rate. Every update cycle, the whole spectrogram is
inferred, and a MIDI representation is drawn on the screen.
In these experiments, the refresh rate of the second com-
puting thread was about 5 Hz in average, but it decreases
with increasing recording time because of the higher data
amount. Furthermore, more temporal context is available to
the model if the recording time is higher. Hence, the model
improves its estimation with each new frame. After a com-
plete recording has been input, the corresponding results
match the ones of the offline system.

5 CONCLUSION

DTMST, a dual task approach with two independent
neural networks, for onset detection and pitch estimation,
has been proposed for monophonic singing transcription.
In order to transcribe non-professional vocals, the net-
works have been trained on a synthetic dataset of artificial

song melodies. The performance is evaluated on the new
SingReal dataset, which consists of real recordings of non-
professional singers. DTMST outperforms all state of the
art algorithms by at least 3.5% in F1 score. Furthermore, a
real-time transcription is realizable with DTMST.

In future works, the impact of synthesized training data
instead of real recordings should be analyzed. Therefore, a
large corpus of annotated real recordings is necessary, for
example, by active learning for semi-automatic annotation.
Furthermore, notes’ offset estimation could be integrated
by a third neural network similar to OnsetNN or as an
additional label in the onset detection.
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[25] S. Böck and G. Widmer, “Maximum Filter Vibrato
Suppression for Onset Detection,” in Proceedings of the
16th International Conference on Digital Audio Effects,
vol. 7, pp. 55–61 (Maynooth, Ireland) (2013 Sep.).

[26] R. M. Bittner, J. Salamon, M. Tierney, et al., “Med-
leyDB: A Multitrack Dataset for Annotation-Intensive MIR
Research,” in Proceedings of the 15th International Society
for Music Information Retrieval Conference (ISMIR), pp.
155–160 (Taipei, Taiwan) (2014 Oct.).

[27] Smule, Inc., “DAMP-VPB: Digital Archive of
Mobile Performances - Smule Vocal Performances Bal-
anced,” Zenodo (2017 Nov.). https://doi.org/10.5281/
zenodo.2616690.
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