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Reverberation continues to be problematic in many areas of audio and speech processing,
including source separation. The precedence effect is an important psychoacoustic tool utilized
by humans to assist in localization by suppressing reflections arising from room boundaries.
Numerous computational precedence models have been developed over the years and all
suggest quite different strategies for handling reverberation. However, relatively little work
has been done on incorporating precedence into source separation. This paper details a study
comparing several computational precedence models and their impact on the performance of
a baseline separation algorithm. The models are tested in a range of reverberant rooms and
with a range of other mixture parameters. Large differences in the performance of the models
are observed. The results show that a model based on interaural coherence and onset-based
inhibition produce the greatest performance gain over the baseline algorithm. The results also
show that it may be necessary to adapt the precedence model to the acoustic conditions of the

room in order to optimize the performance of the separation algorithm.

0 INTRODUCTION

Computational separation of mixtures of sound is an area
of high research interest due to the numerous applications
for separation algorithms, including front-end processing
for missing data speech recognition and enhancement of
hearing prostheses and communication devices such as mo-
bile phones. Many algorithms have been proposed that uti-
lize a variety of processing techniques that work well in
anechoic conditions. However, in many situations reverber-
ation is likely to be present, and unfortunately it continues to
be a major obstacle for separation algorithms due to its cor-
ruption of many of the acoustical cues on which these algo-
rithms rely. Similarly, a number of localization algorithms
have been proposed that work well in anechoic conditions
(e.g., [1]), but these often perform poorly in reverberant
environments because interaural cues are also corrupted
by reverberation. Consequently, reducing the detrimental
effects of reverberation continues to be an important re-
search goal not only for researchers in source separation
but also for researchers working in other areas of signal
processing.
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A number of models have been suggested that attempt
to reduce the deleterious effects of reverberation using
engineering-based methods. For example, the Wiener fil-
ter is shown in [2] to be effective at reducing the effect
of reverberation on sound source separation. In contrast,
numerous human psychophysical and perceptual mecha-
nisms for suppressing the effects of reverberation are well
documented, which have occasionally provided a source of
inspiration for researchers in signal processing. One such
mechanism is the precedence effect.

The precedence effect (for a review see [3]) is described
in the perceptual literature as being an important mecha-
nism for enhancing our ability to localize sounds in rever-
berant environments. Often referred to as the “law of the
first wave front,” the precedence effect describes an au-
ditory mechanism that is able to weight the first (direct)
wavefronts of a sound over later wavefronts arriving as
reflections from other surfaces. However, relatively little
work has been carried out on incorporating precedence ef-
fect processing into separation algorithms that utilize spatial
cues. Work carried out so far is based on that of Paloméki
et al. [4] (see also [5]). However, as Palomiki et al. note,
the precedence model they utilize is somewhat simplified
and further work could be done in order to improve its
localization capabilities.
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Fig. 1. Schematic of the baseline separation algorithm and precedence model based on [4].

The aim of this paper is to investigate whether an en-
hanced precedence model can improve the separation per-
formance of a baseline separation algorithm. Numerous
computational precedence models have been proposed in
the literature (see for example [6,7,8,9,10]). A comprehen-
sive study of these precedence-based processing strategies
was conducted and their impact on the performance of the
baseline separation algorithm was investigated. This base-
line algorithm is described in Section 1, the additional mod-
els are described in Section 2, the experimental procedure
is given in Section 3, results are presented and discussed in
Section 4, and the findings are concluded in Section 5. The
human auditory system uses many cues in order to separate
the constituent signals of a mixture of sounds [11]. To fa-
cilitate investigation of the precedence effect, however, this
paper will consider spatial cues only.

The separation algorithm and precedence models de-
scribed in this paper have been made available as Mat-
lab code at the following URL: http://iosr.surrey.ac.uk/
software. The binaural room impulse responses used in the
experimental section are also available to download from
this URL.

1 THE BASELINE ALGORITHM

This section will first describe the baseline separation
algorithm (Section 1.1), which is heavily based upon the
aforementioned work of Palomiki et al. [4] (note: although
every attempt has been made to follow the principles of
this algorithm, due to practicalities of implementation and
modifications required to enable the evaluation method de-
scribed below, the processing utilized is not identical). The
work includes a simple precedence model, described in
Section 1.1.2. The architecture of the baseline algorithm is
summarized in Fig. 1.

1.1 The Baseline Separation Algorithm

As shown in Fig. 1, the baseline algorithm takes a bin-
aural input and begins its processing with a gammatone
filterbank and peripheral ear model.

In reverberant environments, the correlation between the
left and right ear signals is likely to be lower than that
under anechoic conditions, potentially having a negative
impact on the algorithm’s localization and separation per-
formance. To minimize this impact, a precedence model is
incorporated that inhibits or suppresses information that is
likely to be corrupted by reverberation. The model aims to
achieve this by retaining onsets and suppressing informa-
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tion that follows them. The precedence model operates on
the output of the peripheral ear model and calculates the
cross-correlogram for each frame and frequency channel.

The cross-correlograms are then warped to the azimuthal
domain and used to estimate the relative strengths of two
competing signals arising from spatially-separate sound
sources. These relative strengths are used to calculate a
binary mask, each element of which is set to one when the
correlation at the target source azimuth is greater than the
correlation at the interfering source azimuth. The binary
mask is used to perform the separation, effectively acting
as an array of amplitude envelopes applied to the outputs
of the filterbank.

Each component shown in Fig. 1 is described in the
following sections.

1.1.1 Gammatone Filterbank, Hilbert Envelope,
and Peripheral Ear Model

As shown in Fig. 1, the binaural left and right signals are
first passed through a fourth-order gammatone filterbank
[12] to simulate cochlear frequency selectivity (32 channels
are employed, in the range 50-7500 Hz, equally spaced
on the ERB-rate scale). The outputs of the gammatone
filterbank are then half-wave rectified as a crude model of
the Inner Hair Cells (IHCs); the results are denoted hy, and
hg. The Hilbert envelopes ¢ (for ear k € {L, R}) of each of
these signals are used to estimate the auditory nerve firing
rate uy at time frame [:

w (i, D) =&(i, 0 — HM +1)* (1)
where
6, n) = ex(i,n) — e S 6 (i, n — 1), 2)

M is the frame length in samples (10 ms), u denotes the
auditory nerve firing rate, and oy is a time constant set in
samples to 8 ms. The precedence model is then introduced
to inhibit the inner-hair-cell-modeled data.

1.1.2 The Baseline Precedence Model

Many computational precedence models (especially
those implemented in this paper) suggest that precedence
is achieved by an inhibitory mechanism in the auditory pe-
riphery, rather than by a cognitive mechanism. The baseline
precedence model conforms to this modus operandi by at-
tempting to inhibit inner-hair-cell-modeled data after each
onset that are likely to be corrupted by reverberation. The
inhibited data are used to calculate the cross-correlograms.
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Fig. 2. Examples of the processing in the baseline precedence
model (this excerpt is used in subsequent examples for other mod-
els). Top: Half-wave rectified gammatone filter output (302 Hz
frequency channel) showing the fine structure and Hilbert enve-
lope. Middle: The onset-de-emphasised low-pass filtered signal
envelope. Bottom: The inhibited fine structure.

In the implementation, the baseline model employs an
onset-de-emphasising low-pass filter with an impulse re-
sponse of the form:

hip(n) = Ane "% 3

where o, is a time constant chosen to be the number of
samples corresponding to 15 ms and A is set to give unity
gain at DC. This is used to filter the Hilbert envelope g
to produce an “inhibitory signal.” This inhibitory signal
is then subtracted from the half-wave rectified gammatone
filterbank fine structure. The process is summarized in the
following way:

1oy n) = max(hk(z’, 1) — G (hip(n) (i, m). 0) &)

where G is an inhibitory gain factor that is set to 1. The
precedence-modeled fine structure r is used to obtain the
cross-correlograms (see (5)). An example of the inhibition
procedure is shown in Fig. 2. As can be seen in the figure,
the onset-de-emphasised low-pass-filtered envelope (c) has
been subtracted from the fine structure (b), thus retaining
the onset (d). The information following the onset, that
is likely to be corrupted by reverberation, has been sup-
pressed.

Zurek [13] notes that inhibited information is only used
in localization and that reverberation makes a significant
contribution to the timbral and spatial characteristics of a
perceived sound. The baseline algorithm reflects this by
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only using precedence-modeled information in the local-
ization aspect of the algorithm.

1.1.3 Cross-Correlograms

The cross-correlograms ¢ for each frame are obtained by
cross-correlating the precedence-modeled fine structure ry
over a three-frame rectangular window:

c(i,l, 1) =
3L—1—1

YO or(i. = DL+d+1)R(i.( = DL +d) (5)

d=0
where t denotes the discrete lag (representing Interaural
Time Difference (ITD)) of the cross-correlation such that
{teZ:—-T <1<T}, T=1ms (in samples) and Z is the
set of integers.

The data from the cross-correlograms are subsequently
warped from ITD to azimuth to yield ¢(i, [, ¢), where ¢
denotes azimuthal angle such that {$ € Z: —90° < ¢ <
90°}, since the relationship between ITD and azimuth is
frequency-dependent [14]. The warping function is derived
from Kuhn’s [14] work. Specifically,

IInsin¢

Imp = — -2 (©)
Co

where IT varies with frequency f (in Hz) such that

H f—
3 f <500
log, }gisj(;
25405 cos(n—) 500 < f < 3000 (7)
log, 6
2 f = 3000

where cg is the speed of sound (344 ms~!) and 1 is the ef-
fective radius of the head, which Kuhn derives as 0.093 m,
somewhat larger than typical skull perimeter measure-
ments, perhaps due to protruding features such as the nose
and pinnae. Since Kuhn is not specific about the change in
IT between 500 and 3000 Hz, a raised cosine function is
chosen to vary IT “smoothly.”

The azimuthal-domain cross-correlograms are then
transformed to skeleton cross-correlograms [4,15] in the
following way:

a2
s, 1, ) = qGi, 1, &) *exp(ﬁ"@)) ®)
where
qi, 1, ¢) =
. if(e(i, 1, d) — e(i, 1, ¢ — 1)) x
€L (i1 ¢) el o+ 1) >0 (PI=8
0 otherwise
9)
o(i)=45—(i — 1)I3'T751, (10)

{ieN:1<i <1}, Iis the number of channels (32),
* denotes convolution, and N is the set of natural numbers.
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The skeleton cross-correlograms are subsequently pooled
across frequency and time thus:

8(0) =) _si.1,¢) (1

il

This pooled skeleton cross-correlogram is used to obtain
“global” estimates of the target signal and interferer az-
imuths (¢, and ¢; respectively), which are identified using
the following procedure:

¢; = min(dy, ¢2) 12

¢; = max(d1, ¢) (13)
where

b1 = arg maxS(i). (14)

b2 = arg max(SCho) : b1 ¢ o) (15)

and {Vy € ¢ : (5(4) — 8 — D) (5(0) —5(¢ + 1) > 0}.
Note that the target is consistently placed on the left and
thus the azimuths are assigned accordingly.

1.1.4 Binary Mask

The azimuthal cross-correlograms are used to calculate
the binary time—frequency (T—F) mask m by making “local”
estimates of the relative strength of the target and interfering
signals at the obtained global azimuths thus:

1 ife(, 1, ¢) > c(, 1, d;)

m(i, ) = and IOIOgIO<M> >0, (16)
0 otherwise ‘
where
¢ = max; ¢ c(, [, $) (17)

Generally ©, was set to —160 dB.

Once the binary mask has been estimated, two addi-
tional checks are performed on the mask: an interaural
level difference (ILD) check for azimuthal estimate con-
sistency and a rate threshold check. These are described
below.

1.1.5 Interaural Level Difference

The ILD value for each T-F unit in frequency channels
above 2.8 kHz (denoted v) that has a corresponding mask
value of one is checked against an ILD template ¢ to ensure
azimuthal estimate consistency. The ILD template speci-
fies the ILD at each available angle and in each frequency
channel v; it was calculated using pseudo-anechoic HRTFs
(see Section 3.4) and white noise. A zero is written to the
mask if the ILD value deviates from the template by more
than 1 dB:

m(v,[) =
0 if [ILD(v, I) — ¢(v, ¢,)| > 1 dB (18)
m(v,/) otherwise
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where
. u (i, )
ILD(, ) = 1010g10(ﬁR(i7 l)), (19)
GG, D) = (wl, D)’ (20)

1.1.6 Rate Threshold

Energy values where the corresponding mask value is one
are compared to a running energy average &, calculated in
each frequency channel over a 200 ms (20 frame) window
with 100 ms (10 frame) overlap. If the ratio of these values
exceeds a rate threshold then a zero is written to the mask
thus:

. R, 1)
m(i, [) = 0 if 1010g10( =G0 > > 0, @1
m(i,[) otherwise
where
1 0.3
g = (E(ui"m(i, D+ w3, l))) : (22)

u g was calculated as in (20) and ©, is the rate threshold
set to —11 dB. This check was introduced in the original
model [4] because it was found to be effective in regions
with a low signal-to-noise ratio. In these regions, where
target energy is weak, azimuth estimation is likely to be
inaccurate. Hence, mask estimation may be more accurate
if these T—F regions with low energy are rejected.

1.1.7 Resynthesis

Once the binary mask has been calculated, the output can
be resynthesized. However, the evaluation procedure de-
scribed later does not require a resynthesized output, and so
this is not implemented. Furthermore, in the original model
a spectral energy normalization procedure was introduced
in order to undo the spectral envelope distortion caused by
reverberation. This procedure was applied at resynthesis
and, hence, also not implemented here.

1.2 Summary

This section presented a separation algorithm that esti-
mates the relative strength of two competing signals arising
from spatially-separate sound sources and separates them
by calculating a binary mask. The algorithm includes a
precedence model to suppress information following an
onset. For comparison, the precedence model can be by-
passed by setting G = 0 in (4). The precedence model will
also be compared with models presented in the following
section.

2 REPLACING THE PRECEDENCE MODEL

This section describes the incorporation of four alter-
native computational precedence models into the baseline
separation algorithm. In order to attempt to improve the
performance of the baseline separation algorithm, each of
a selection of the numerous computational precedence and
binaural localization models proposed in the literature was
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Fig. 3. Martin’s [10] computational implementation of Zurek’s
[13] precedence model.

incorporated into the algorithm by replacing the baseline
precedence model. Models proposed by Martin [10] (Sec-
tion 2.1), Faller & Merimaa [7] (Section 2.2), Lindemann
[8,16] (Section 2.3), and Macpherson [9] (Section 2.4)
are presented. In each case, the baseline separation algo-
rithm is retained, but the precedence model—and in some
cases the peripheral ear model—is replaced by that of the
model under test. As mentioned in the previous section,
the precedence model takes the output of the peripheral ear
model and returns the cross-correlogram for each frame and
frequency channel ¢(i, /, t); the separation algorithm then
warps this to the azimuthal domain and uses it to calculate
the binary mask as in (16).

It should be noted that this study is designed to test the
performance of the combination of the baseline algorithm
and the computational precedence models. No judgments
are or will be made about the technical quality, biological
plausibility or even the localization accuracy of the models,
although clearly the latter will have a significant influence
on the separation performance.

Although it has long been known that ILD plays a sig-
nificant role in localization, especially at high frequencies
[17], in this work ILD is used only to check the consis-
tency of azimuth estimations for frequencies above 2.8 kHz
(see Section 1.1). It is not incorporated into the precedence
modeling because the original precedence models do not
incorporate it, nor do they provide an obvious mechanism
for its incorporation.

2.1 Martin’s Model

Martin’s [10] model (shown in Fig. 3) is an implementa-
tion of Zurek’s [13] account of precedence. The lower path
of the model performs localization using ITD. The upper
path of the model takes effect when sharp onsets are present
in the signal. When such an onset is detected, a brief period
of inhibition is triggered that suppresses the contribution of
the lower path. The inhibition is maximal 1.5 ms after the
onset and recovers over approximately 10 ms.

Unfortunately, Martin’s paper lacks some crucial details
necessary to implement the model accurately. Specifically,
Martin’s paper lacks details regarding the filter to calculate
the “excitation envelope” and about the numeric levels of
the numerous signals that are calculated. However, there is
only one conceptual difference between the baseline prece-
dence model and Martin’s model: the point at which the
inhibition is applied. In the baseline model, inhibition is
applied to the fine structure before it is cross-correlated,
whereas in Martin’s model inhibition is applied to the run-
ning cross-correlation. Consequently, the implementation
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Fig. 4. Example of the processing in Martin’s precedence model
using the same signal as in Fig. 2. Top: Half-wave rectified gam-
matone filter output. Bottom: The resulting inhibitory signal.

of Martin’s model in the current study is heavily based
upon the baseline precedence model.

In the implementation, first the “excitation envelope” x
is calculated from the Hilbert envelope thus:

xi (i, n) = e (i, n) * hip(n) (23)

where hj, was given in (3), except that in this case the
time constant o, = o, = 1.5 ms. Following this, a mono
excitation envelope X  is calculated:

1
XLR(i, n) = E(XL(ia n) + xr(i, n)) (24)

and subsequently normalized independently for each fre-
quency channel to be in the range [0,1]. The inhibitory
signal t is calculated from this excitation envelope thus:

Wi, n) = max<1 — (G - xir (i, ), 0) (25)

The inhibited running cross-correlation ¢, is then calculated
in the following way:

cl.(iv nv T) = L(i’ n) é(l, n9 t) (26)
where

éi,n, 1) =
hL(i, max(n + T, n))hR(i, max(n — T, n)) 27

Finally, these cross-correlations are averaged over a
three-frame rectangular window to produce the cross-
correlograms:

3M

cli,l, 1) = 3LMZcL(i,(1— DM +d, ) (28)
d=1

As with the following models, subsequent processing of
the cross-correlograms, grouping and separation routines is
identical to that described in Section 1. An example of the
inhibition procedure is shown in Fig. 4.
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2.2 Faller & Merimaa’s Model

The model proposed by Faller & Merimaa [7] differs
from other computational precedence models by suggesting
that some precedence effects can be modeled by calculating
Interaural Coherence (IC). Specifically, if a dichotic signal
is coherent then this is a good indication that the obtained
ITD and ILD correspond to the sound’s true direction. IC x
is calculated in each frequency band as the maximum value
of the running normalized cross-correlation €:

x (@i, n) = max &, n, 1) (29)

This gives a result in the interval [0,1], with a value of one
indicating that the signals are perfectly coherent and hence
that the elicited cues are indicative of the sound’s true di-
rection. It is therefore necessary to specify a threshold for
cue selection. According to Faller & Merimaa [7], this is
a trade-off between selecting reliable cues that correspond
closely to free-field conditions and maximizing the pro-
portion of the input signals that contributes to localization.
They also note that the optimal choice of threshold is likely
to be dependent on the acoustic environment.

In terms of implementation, the first stage of the model
is the peripheral auditory processing. Faller & Merimaa
[7] suggest the use of a model of neural transduction pro-
posed in [18]. This model recreates the compression and
half-wave rectification that has been observed by numer-
ous researchers in auditory physiology but does not enhance
onsets. The employed process is summarized as follows:

o Each Hilbert envelope output of the gammatone filter-
bank g, is compressed by raising it to the power 0.23 and
then squared;

¢ This envelope is then filtered with a fourth-order FIR
low-pass filter with a cut-off frequency of 425 Hz;

o The resulting envelopes £ are half-wave rectified and
then re-combined with the half-wave rectified gamma-
tone filterbank output thus:

n)= M max(yk(i, n), 0)

h, (i,
i ex(i, n)

(30)

where hy is the modeled IHC response and vy is the gam-
matone filter fine structure.

The cross-correlograms are calculated using the THC-
modeled data. As stated above, this model requires the
calculation of normalized running cross-correlation, which
is of the form

¢i,n, v

JayL(@, n, vagr(, n, 1)

&, n, 1) = (€28

where
. 1 . .
¢(i,n, v) = —hy (i, max(n + 1, n))hg (i, max(n — 1, n))
or

1
+<l — —)é(i, n—1,1),
OLf
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Fig. 5. Example of the processing in Faller & Merimaa’s model
using the same signal as in Fig. 2. Top: The IHC-modeled data.
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. Lo,
a (i, n, v) = —h{ (i, max(n + 1, n))
or

1
+<1 - —)aL(i, n—1,0, (33)
273
. Lo,
ar(i,n, 1) = —hR(l, max(n — T, n))
Oy
1 .
+(1 - _>aR(l7 n— 1’ T)? (34)
ar

and oy is the time constant of the exponentially decaying
window, chosen to be the number of samples correspond-
ing to 10 ms. The cross-correlograms are calculated by
averaging only the running normalized cross-correlations
within a given frame for which the corresponding IC value
X exceeds a threshold value O, :

0 fv=g

1
m Z ¢(i,d, ) otherwise
dev

where {W en: (I — DM+1<n<IM, y(i,n)> O, }, x was
given in (29), & is the empty set, and ©, is chosen to be
0.5, corresponding to two simultaneous and coherent onsets
arising from two statistically-independent sound sources.
An example of this processing is shown in Fig. 5.

ci,l,v) = (35)

2.3 Lindemann’s Model

Lindemann’s [8,16] model can be considered as an exten-
sion of Jeffress’s [19] original cross-correlation theory of
sound localization. The model is extended with two compo-
nents: “monaural detectors” and a “contralateral-inhibition
mechanism” (an inhibition along the t-axis). This inhi-
bition is achieved through two components: a static in-
hibition component and a dynamic inhibition component,
the latter of which is intended to simulate the precedence
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from left ear from right ear

Fig. 6. The architecture of Lindemann’s binaural localization
model [8]. Adapted from [6,8].

effect. Although intended for stationary signals, the cross-
correlation-based architecture lends itself well to this ap-
plication. However, the suitability of the model to non-
stationary signals remains unclear.

The architecture of the localization model is summa-
rized in Fig. 6. The inhibition is derived from the con-
tralateral signals and also from previous calculations of the
cross-correlation. Furthermore, the inhibition is triggered
by peaks in the primary cross-correlation and decays with
a time constant of 10 ms. Additionally, monaural detectors
(indicated by the grey multiplication boxes at the beginning
of each delay line in Fig. 6) are included in order to later-
alize the input even if only one ear signal is present and
cross-correlation fails.

In terms of implementation, the peripheral auditory pro-
cessing of the baseline algorithm is retained since Linde-
mann states that the exact nature of the peripheral pro-
cessing is inconsequential to the operation of the model.
According to Lindemann, the first step is to normalize the
binaural signals to have a maximum value of one. However,
the input level is critical to the model’s operation; this is
discussed toward the end of the section (see “The Operating
Point”). Following the normalization, the modified inputs
to the model, ﬁL and ﬁR, are defined thus:

hG,n+1,1+1)=

hG,n,Ouwl,nt -T<t<T-1
{hL(i, n+7t t=T (36)
hRG,n+1,1—1) =
hrG, n, OwG,n,tv) —-T+1<t<T a7
hr(i,n + 1) t=-T

where 7 is the maximum lag in samples. Note here that
the outputs of the peripheral processor hy, and hg have had
zeros placed between alternate samples in order to halve
the sample period. The inhibitory components (1, and (g are
derived from the contralateral signal in the following way:

w(i,n, v = (1 —hrG, 7, 0)(1 =G, n—1,1) (38
w(i,n, 1) = (1 —heG,n,0)(1 -G n—1,1) (39

Here, @ is the dynamic inhibitory component, which is de-
rived from the cross-correlation product € in the following
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way:
O, n,1)=¢lI,n—1,1)
+ @@, n — 1, e /(1 —&i,n—1,7)  (40)

where T, is half the sample period and aj,, is the fade-
off time constant (10 ms). The running cross-correlation is
calculated as follows:

&iyn, 1) = (p(t) + (1 = p(v)hgt, n, r))
X(p(—‘t) + (1 = p(—=1)he i, n, r)) (41)

where p is the monaural sensitivity function such that p(t) =
0.035¢~T+9/6_ The inhibited cross-correlation ¢, is calcu-
lated from the running cross-correlation using an exponen-
tial window thus:

c(i,n,v) = (1—e /T, n, 1)

+e T/ e (iyn —1,7) 42)

where Tjy is the integration time constant (5 ms). The cross-
correlograms are calculated by averaging the running cross-
correlations over the frame:

M
ci,l,v)= %th(z’, (—DM+d, v (43)
d=1

The Operating Point

One difficulty in Lindemann’s paper is the discussion of
the “operating point” or “inhibition parameter” (cjun). The
parameter appears to be crucial for controlling the amount
of inhibition. Although Lindemann states how it is derived,
he does not discuss how it is implemented. Specifically,
Lindemann [8] states that:

‘The operating point is described by the “inhibition pa-
rameter” cjyp that is derived from the input signal having the
greater amplitude. For pure tones with the amplitudes A,
(right input signal) and A; (left input signal) the inhibition
parameter is

Ciph = max{A,, A;} with 0 < ¢jpp < 1

For stationary noise signals cj,, was derived analogously,
A, and A; being the root-mean-square (before half-wave
rectification), multiplied by V2. The noise signals were
clipped after the half-wave rectification to avoid input sig-
nals greater than one.’

Clearly, although the inhibition parameter is “derived,”
there must be a mechanism that aims to achieve a given
inhibition parameter (cjyn) at the input to the model. Con-
sequently, here the input to the model h is derived in the
following way, based on the above description and a target
inhibition parameter ciyp:

hy (i, n) = min<max<cch(1?) (i, n), o), 1) (44)
Y

where

¢ (i) = ml?x 45)
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Fig. 7. Examples of the processing in Lindemann’s model using
the same signal as in Fig. 2. Top: The output of the peripheral
processor. Bottom: The left inhibitory component t;, with T = 0.

and N is the number of samples at the input. Lindemann
states that the optimal value for cj,, = 0.3 and hence this
value is employed in the investigation. An example of the
processing in the model is shown in Fig. 7.

2.4 Macpherson’s Model

Macpherson [9] proposes a model for stereo imaging
measurement. However, since the model is based on cross-
correlation, it can be easily adapted for use in this work. The
first stage of the model is the peripheral processing, how-
ever, there is insufficient information to accurately recre-
ate this stage. Since this stage aims to recreate both the
cochlear filtering and the half-wave rectification, adapta-
tion and phase- and envelope-locking seen in auditory nerve
responses, a combination of a gammatone filterbank and a
Meddis IHC model are utilized in the peripheral processing.

The precedence modeling is introduced through the se-
lection of ““analysis points.” Macpherson argues that per-
forming a running cross-correlation for the entire signal
length is inefficient. Therefore, a set of analysis points
(samples) W are chosen where local peaks occur across
the left and right ear signals within the cross-correlation
window M. (2 ms, in samples) such that:

V=Y NPy (46)

where

W, = {n:(hGi,n) —h G, n—1)
x(h(i,n) —h (i, n + 1)) > 0}, 47)

Yr = {n + w: (hg(i,n) —hg(i,n — 1))

x (hg(i, n) — hg(i,n + 1)) > 0,

2

At high frequencies, even with the envelope-locking
characteristics of the IHC model, peaks can occur very

—M. M,
n € Z, > SpHE—,n#0 (48)
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close together, creating significant overlap of the cross-
correlation windows. To reduce this inefficiency, the input
is divided into frames of length M,/2 and only the last anal-
ysis point from each frame is selected.

The cross-correlation ¢ is calculated for each member
of W with the peak at the center of the cross-correlation
window. To simulate the precedence effect, an inhibited
cross-correlation is calculated as a weighted average of
cross-correlations that fall within the inhibition window
20 ms in length (two frames, in samples) after the initial
analysis point. Unfortunately, Macpherson does not specify
this weighting function, only stating that peaks that occur
within 1-6 ms are suppressed. Consequently, the weighting
window proposed in [10] is adapted and utilized here and
the inhibited cross-correlation is calculated in the following
way:

cl(i7 n5 T) ==
0 ify = o
1
— Z w,(x —n)é@i,d, 1) otherwise > (new)
WU@
(49)
where {\\CW:n < W <n+2L},
éi,n,t) =
1 nf hy (i, max(d + v, d)) x
M.+ 1 hg (i, max(d — t.d)) )~
d:nf%
new), (50)
wMM)=14nmx<l—(3fngnLO), 51)
(o

hip, was as in Martin’s model (see Section 2.1), o, was
defined in Martin’s model (set in samples to 1.5 ms), G
is the inhibitory gain (set to 1), and A is set to give unity
gain at DC. Last, these weighted cross-correlations are av-
eraged across the duration of the frame to form the cross-
correlograms thus:

0 if =@
. 1
e, l, 1) = m Z c(i,d,t) otherwise (52)

dej

where {f CW:( — )M +1 < W <IM}. An example
of this processing is shown in Fig. 8.

2.5 Summary

This section has presented precedence models suggested
by Martin [10], Faller & Merimaa [7], Lindemann [8,16],
and Macpherson [9]. A summary of the peripheral process-
ing and precedence processing in each model is provided
in Table 1.

3 EXPERIMENTAL PROCEDURE

This section describes the procedure used to test the
models and includes specific discussions of independent
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Table 1. Summary of peripheral ear and precedence processing for each model.

Model Peripheral Ear Model Precedence Model Outline
Baseline Half-wave rectifier Calculates an inhibitory signal from onset information, uses this to suppress fine
structure output by the peripheral ear model that may be corrupted by
reverberation
Martin Half-wave rectifier Calculates an inhibitory signal from onset information, uses this to suppress
localization information that may be corrupted by reverberation
Faller & Merimaa Bernstein et al. [18] Localizes sounds using cues that exceed an interaural coherence (IC) threshold
Lindemann Clipper and half-wave rectifier ~ Extends Jeffress’s [19] cross-correlation theory of sound localization with
several components, including a dynamic inhibition component intended to
simulate the precedence effect.
Macpherson Meddis et al. [20] Performs localization exclusively at local peaks and weights them in a manner
similar to that employed in Martin’s model
600 Table 2. Room acoustical properties, including RTs,
direct-to-reverberant ratio (DRR), and initial time delay gap
()
B 400 ITDG).
£
£ 200 H) ' ' Hl ‘ “ ) ( Room RTe [s] DRR [dB] ITDG [ms]
A 0.32 8.72 6.09
0 0.05 0.1 0.15 0.2 C 0.68 8.82 11.9
Time [s] D 0.89 6.12 21.6

Fig. 8. Example of the processing in Macpherson’s precedence
model using the same signal as in Fig. 2. The cross-correlation
windows are shown in white. Grey regions do not contribute to
localization.

variables, the choice of metric, signals, and how the Binau-
ral Room Impulse Responses (BRIRs) were obtained.

3.1 Independent Variables

The models were tested in a range of mixture conditions
similar to those tested in [4]. A range of conditions was em-
ployed to ensure that the performances (reported later) were
representative of a range of realistic conditions offering a
varying degree of difficulty. However, only RTgy will be
compared in the results, with model performances reported
as means calculated across the other variables. Specifically,
the models were tested under the following conditions:

o Target/interferer azimuthal separations of 10°, 20°, and
40° (i.e., £5°, £10°, and £20° with respect to the frontal
median plane), with the target on the left;

o Target-to-Interferer Ratios (TIRs) of 0, 10, and 20 dB
(RMS);

¢ The following interferers: white noise, male speech, and
a modern piece of rock music (see Section 3.3);

e Four real rooms and an anechoic room, selected to have
arange of RT¢ps, but also with a range of other acoustic
properties as shown in Table 2 and discussed in Section
34.

These variables give rise to 135 experimental combina-
tions.
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3.2 Choice of Metric

Many applications of this work are likely to entail further
machine processing rather than human listening (e.g., auto-
matic speech recognition). Since human perception is not
necessarily an accurate predictor of machine performance
in such applications, a metric that objectively assesses the
attained degree of separation is deemed more appropriate
than a listening-based assessment.

According to Li and Wang [21] a widely utilized ob-
jective metric for assessing source separation is Signal-to-
Noise Ratio:

2
SNR:IOlogm( 2,87 0) )2) (53)

>, (8() = s(n)

where s is the target signal and § is the estimated target
signal. Note that the denominator is a summation of a dif-
ference signal and thus incorporates any and all differences
between the target and estimated target. In this study this
includes the reverberation present in the mixture. The re-
verberation contributes differently to the target and esti-
mated target, increasing the magnitude of the denominator
and lowering the SNR. Furthermore, the calculated SNR is
likely to vary dramatically according to the nature of the
reverberation. Hence, for the same signals and binary mask,
SNR is likely to demonstrate large inconsistencies between
different acoustic environments. This prevents meaning-
ful comparison of separation algorithms across different
acoustic conditions. Consequently a novel metric is pro-
posed, loosely based on binary mask error [22] or label-
ing accuracy [23], to assess the separation performance of
the algorithm. The metric—the Ideal Binary Mask Ratio
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(IBMR) [24]—assesses the calculated mask m by compar-
ing it directly with the Ideal Binary Mask mygy; thus:

IBMR = —— (54)
A+op
where ) denotes the number of target T-F units the two
masks have in common and p denotes the number of T—
F units that differ between the masks. These counts are
calculated thus:

n=Y m(i, 1) Ampu(,D), (55)
il
o= m(i,1)®mgu(,l) (56)
il
where A denotes binary logical AND and @ denotes binary

logical XOR. The IBM is calculated using the following
logic:

1 if 101 g —ﬁ[(i’ l) BM 57
1 (0] >0
10 ll/i(l', l) ! ( )
0 otherwise

mppmv(i, [) =

where 1, and 4; denote the clean target and interferer energy
respectively and ®jpy is a threshold value set to O dB. See
Section 1 (20) for the calculation of u.

3.3 Signals

As stated above, similar interferers to those used in [4]
were used in the experimental procedure. The target signal
was a four-second excerpt of female speech taken from the
European Broadcasting Union Sound Quality Assessment
Material [25], chosen because many applications are likely
to be based on speech. The interfering signals were cho-
sen to be representative of signals encountered in the real
world and to provide a range of challenges. They were: a
rock music track (“Action!” by Razorlight), white noise,
and an excerpt of male speech also taken from [25]. The
speech segments were chosen to incorporate a wide range
of phonemes. The white noise, although perhaps unnat-
ural, provides a slightly different challenge compared to
the speech and music: the white noise has more energy at
high frequencies than the other signals (and less at lower
frequencies) and so masking is likely to occur at higher
frequencies than it would for the other interferers.

3.4 Binaural Room Impulse Responses

It was decided to use Binaural Room Impulse Responses
(BRIRSs) captured in real rooms rather than simulating them
due to the generally poor subjective quality of responses
calculated using acoustic models. The responses were cap-
tured in a variety of rooms at the University of Surrey using a
Cortex (mk.2) Head and Torso Simulator (HATS) and Gen-
elec 8020A loudspeaker. The loudspeaker was 1.5 m from
the HAT'S in order to maintain commonality with the algo-
rithm on which this research is based [4]. The loudspeaker
replayed sine sweeps that were deconvolved to produce the
impulse responses. Acoustical properties for each room are
shown in Table 2. Measurements of RT¢, were obtained
according to [26] using an interrupted pink noise method
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Fig. 9. Mean model performances showing IBMR versus room.

with six microphone positions and two loudspeaker posi-
tions (12 measurements in total). In accordance with the
standard, the overall room RTg is calculated by averaging
the 500 Hz and 1 kHz bands. For the anechoic condition,
a similar procedure was used and impulse responses were
obtained using a pseudo-anechoic approach whereby the
responses were simply truncated before the first reflection,
having been captured in a large room.

3.5 Summary

The following independent variables were used to test
the models:

e Three target/interferer azimuthal separations;

e Three Target-to-Interferer Ratios (TIRs);

e Three interfering signals;

eFive acoustic environments with different RTggs.

The performance metric was the Ideal Binary Mask Ratio
(IBMR).

4 RESULTS AND DISCUSSION

The results from the study are given in Fig. 9. The plot
shows IBMR versus room with the data averaged over all
experimental conditions. The data are compared to “No
Inhibition,” i.e., the data obtained from the baseline algo-
rithm, except that the precedence model is bypassed by
setting G = 0 (see (4)). Plotting the data obtained without
precedence processing demonstrates the performance gain
achieved by each of the precedence models.

There are five points to note about the plot:

1. The uninhibited model performs well for the anechoic
condition, although the performance drops rapidly with
the RTg, of the room.
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2. The baseline model performs poorly and is out-
performed by the uninhibited model until the room
with the longest RTgy.

3. Martin’s model appears to perform well in all condi-
tions.

4. The models of Faller & Merimaa and Lindemann
demonstrate average performance for the anechoic con-
dition but perform favorably for the other acoustic con-
ditions.

5. Macpherson’s model performs well in the anechoic
condition but performs less favorably in rooms with
longer RTgps compared to most other models.

From these results, three observations can be made about
the data. First, the uninhibited model performs better than
many of the precedence models for the anechoic condition.
However, the performance drops off rapidly and many of
the precedence models out-perform the uninhibited model
for subsequent reverberant rooms. This may be because
any precedence processing removes information that may
be corrupted by reverberation. However, when no rever-
beration is present, this strategy removes information that
would otherwise contribute to localization and hence to
source identification. As RTg, increases the amount of us-
able localization information decreases and so the prece-
dence models begin to out-perform the uninhibited model.

Second, the baseline precedence model appears to pro-
vide no performance gain until it is tested in rooms with
longer RTgps. As with some other models this is because,
at shorter RT¢ps, the model is excessively removing infor-
mation that would otherwise positively contribute to local-
ization and separation. It is not until longer RTgps that this
strategy becomes beneficial. This suggests that in order to
optimize the performance of the separation algorithm, the
precedence model should adapt its processing to the acous-
tic conditions. For example, the inhibitory gain factor G in
the baseline and Martin models (see (4)) or the IC thresh-
old ®, in Faller & Merimaa’s model (see (35)) may need
to increase as the acoustic conditions deteriorate. Recent
work, such as that described in [27], has demonstrated how
the perceptual salience of reverberation changes as a func-
tion of both room acoustics and signal characteristics. Such
work could make an important contribution to an adaptive
precedence model for use in the baseline algorithm.

Last, in rooms with medium to long RTgps, many of the
models perform comparably (within about 0.05 IBMR).
However, the models of Martin and Faller & Merimaa gen-
erally perform best across the rooms. Again, the relatively
poorer performance in rooms with short RT¢ps may be due
to the removal of information that would otherwise posi-
tively contribute to localization.

5 CONCLUSIONS

The aim of this paper was to investigate whether an en-
hanced precedence model can improve the separation per-
formance of a baseline separation algorithm. The results
above have shown that an enhanced precedence model can
improve the separation performance of the baseline separa-
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tion algorithm. Precedence models based on those proposed
by Martin and by Faller & Merimaa showed consistently
good performance across the rooms. It was noted earlier
that Faller & Merimaa [7] state that setting the IC thresh-
old in their model is a trade-off between selecting reliable
cues that correspond closely to free-field conditions and
maximizing the proportion of the input signals contributing
to localization. The results shown in this paper reflect this
and indicate that a dynamic component of the precedence
models may be necessary in order to adapt the precedence
processing to the acoustic conditions, thus maximizing the
separation performance of the algorithm. This hypothesis
has been supported in recent work that demonstrated that
the precedence models can be optimized (in order to offer
improved performance) for each room [28,29]. An inter-
esting area for future work will be to build an algorithm
that can automatically estimate these optimal precedence
parameters by extracting the relevant acoustical parameters
from the input.
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