AES E-Library

AES E-Library

3D Impulse Response Convolution with Multichannel Direct Sound: Assessing Perceptual Equivalency between Room- and Source- Impression for Music Production

Document Thumbnail

A method for representing the three-dimensional radiation patterns of instruments/performers within artificial reverberation using multichannel direct sound files convolved with channel-based spatial room impulse responses (SRIRs) is presented. Two reverb conditions are studied in a controlled listening test: a) all SRIR channel positions are convolved with a single monophonic direct sound file, and b) each SRIR channel position is convolved with a unique direct sound file taken from a microphone array surrounding the performer. Participants were asked to adjust the level of each reverberation condition (relative to a fixed direct sound stream) to three perceptual thresholds relating to source- and room- impression. Results of separate three-way within-subject ANOVAs and post-hoc analysis show significant interactions between instrument / room type, and instrument / reverb condition on each of the three thresholds. Most notably, reverb condition b) required less level than condition a) to yield perceptual equivalency between source- and room- impression, suggesting that the inclusion of multichannel direct sound in SRIR convolution may increase the salience of room impression in the immersive reproduction of acoustic music.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=21496

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society