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ABSTRACT

In audio post-production, the adoption of sound synthesis offers a viable alternative for searching and recording
samples in creating soundscapes. However, a central concern arises regarding the ability of synthetic sounds to
match the perceived authenticity of library samples. This paper introduces an analytical approach, examining
authentic and synthetic samples in five categories(burning embers, pouring water, explosions, popping bubbles and
church bells) by delving into audio descriptors that distinguish both types. We focus in the utilization of machine
learning classification models and a perceptual evaluation experiment. The perceptual evaluation was between
five distinct synthesis techniques – granular, additive, subtractive, physically informed, and modal synthesis –
revealed that subtractive synthesis is perceived as more realistic in explosion sounds, while additive synthesis works
better with pouring water sounds. This study provides valuable insights into the audio descriptors that may require
modification in specific synthetic models, paving the way for a deeper understanding of sound synthesis methods
and facilitating their integration into the sound design process.

1 Introduction

Sound design significantly influences the perception of
realism in the entertainment industry. Crafting immer-
sive soundscapes is based on the use of foley.This task
can be time-consuming due to the repetition of sounds
and the challenge of finding suitable alternatives. In re-
cent years, the practice of creating sounds from scratch
has gained prominence across various sectors, includ-
ing TV, video games, cinema, and podcasts.

Sound synthesis involves generating audio through

computational processes. We utilized Nemisindo [1], a
browser-based sound effect synthesis framework, as the
primary tool to create our synthetic dataset. While [2]
acknowledged numerous attempts to evaluate synthetic
models and define sound creation methods, there is cur-
rently no established standard for problem definition,
dataset, or evaluation in Foley or sound synthesis, as
highlighted in [3].

In Section 2, we detail the synthesis methods used to
create and compare sounds across five categories: burn-
ing embers, explosions, pouring hot water, popping
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bubbles, and church bells. Section 3 explores the im-
portance of audio descriptors in comparing Nemisindo
synthetic models to real sounds. Section 4 presents
our comparative analysis of various synthetic models
(subtractive, additive, modal, sinusoidal, physically in-
spired, and granular) using a methodology similar to
the Multiple Stimuli with Hidden Reference and An-
chor Test ([4]). Finally, in Section 5, we provide a
comprehensive discussion of our results and outline
conclusions for this research.

2 Methods

2.1 Synthesis Methods

The synthesis methods in this study were derived from a
code analysis of the Nemisindo models for each sound
shown in Table 1, with model definitions outlined by
[5].

Additive and modal synthesis, create intricate wave-
forms through the addition of sine waves with inde-
pendent amplitudes, frequencies, and phases[6]. Mod-
ulation, involves the variation of a dynamic signal
influenced by another signal, also known as the car-
rier and modulator signals. Subtractive synthesis, be-
gins with a waveform rich in overtones, employing
filters to produce sonically rich, harmonically complex
outputs. The physically informed synthesis, has in-
spiration from the physical properties of sound, using
known physics to guide signal-based models with en-
hanced accuracy. Additionally, our exploration extends
to granular synthesis, inspired by the works of [7, 8].
Granular synthesis involves segmenting audio samples
into tiny "grains" (1 to 1000 milliseconds), providing a
unique manipulation to create new sounds, [7].

2.2 Data

We gathered sound samples from three places: BBC
Sound Effects Library 1, Pro Sound Hybrid Library 2,
and the dataset by Piczak [9]. At the same time, we
used the Nemisindo’s online procedural audio system 3

tool to make around 55 artificial sounds for each type.
For fairness, we selected the sounds with the follow-
ing characteristics: Explosions with just one "boom",

1https://sound-effects.bbcrewind.co.uk/
2https://www.prosoundeffects.com/hybrid-library/
3https://nemisindo.com

Table 1: Synthetic models used in Nemisindo.

Sound Effects and Synthesis Methods
Sound Method 1 (Ne-

misindo)
Explosions (1 Boom) Subtractive
Church Bells (1 Hit) Additive and modal
Popping Bubbles Additive and modal
Burning Embers (Fire) Additive, physically in-

formed and subtractive
Pouring Hot Water Additive and modal

church bells with a single hit, burning embers with no-
ticeable crackling and hissing, popping bubbles with a
sweeping sound and pouring hot water sounds with a
noticeable pipe noise.

Our dataset has 680 sounds in total. All sounds are 5
seconds long, 44.1Khz, mono-sourced and 16bps.

In section 4, we compare the synthetic samples and
the real samples with granular, sinusoidal and additive
synthesis from Turchet and Simoncelli’s collection4.

2.3 Audio Descriptors

The selection of audio descriptors in this study was
influenced by [10], where a comprehensive comparison
of objective evaluation metrics commonly employed in
contemporary sound synthesis design was conducted.
Additionally, sound descriptors from [11] helped shape
our approach. These descriptions emphasized crucial
audio features, including fundamental frequencies, the
first four harmonics, spectral centroid, zero crossing
rates, and visual aids such as spectrograms or Mel
Frequency Cepstral Coefficients (MFCC) plots.

We meticulously chose a total of seventy-eight fea-
tures, comprising both commonly used descriptors and
global audio descriptors. Examples of these descriptors
include attack time, zero crossing rates, temporal enve-
lope, loudness, RMS, instant power, entropy, dynamic
complexity, high frequency, spectral roll-off, intensity,
temporal centroid to total length ratio (TCToTotal),
spectral complexity, spread, skewness, kurtosis, etc.

4https://code.soundsoftware.ac.uk/projects/time-domain-
probabilistic-concatenative-synthesis
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For instantaneous descriptors, we computed the first 30
MFCC coefficients, spectral centroid, and Short Time
Fourier Transform (STFT).

We extracted the hand-picked audio descriptors with
the open-source library Essentia [12]. Following the
categorization approach outlined in [13], the audio de-
scriptors were systematically classified into temporal,
spectral, and spectrotemporal domains.

3 Objective Evaluation

We employed a supervised approach with the sci-kit-
learn library5, utilizing both the Random Forest and
XGBoost. The Random Forest aggregates the outputs
of multiple decision trees[14] to generate a single result,
while XGBoost[15] is an optimized distributed gradient
boosting algorithm, offering parallel tree boosting. Our
focus was on identifying descriptors that specifically
differentiate real samples from synthetic ones.

3.0.1 SHAP Values and PCA’s

We determined the top two audio descriptors among
the initial seventy-eight using SHapley Additive ex-
Planations (SHAP) values, a method outlined in [16]
that assigns importance values to features, revealing
their impact on model predictions. A comprehensive
analysis compared SHAP values from both XGBoost
and Random Forest models. To interpret the results,
we conducted Principal Component Analysis (PCA)
specifically on the top two descriptors, a statistical tech-
nique reducing datasets and elucidating the relationship
between sound components.

The description of each feature is listed below:

1. Attack Time: This temporal descriptor is defined
as the time from the onset of a sound to its more
stable phase [13]. In Essentia, this feature is com-
puted using the LogAttackTime algorithm, which
identifies the attack’s onset, often estimated as the
point where the signal envelope reaches 20 per-
cent of its maximum value to account for potential
noise presence.

2. Effective Duration: This temporal descriptor, this
feature measures the time when the signal is per-
ceptually meaningful and is computed from the
signal envelope.

5https://scikit-learn.org/stable/

3. Pitch Salience: This spectral descriptor provides
a rapid measure of the sensation of tone and is
calculated as the ratio of the autocorrelation value
of the spectrum to the non-shifted value.

4. Dynamic Complexity: Another temporal descrip-
tor, this metric is associated with the dynamic
range and the level of fluctuation within a record-
ing. It is measured in decibels and is defined as
the average absolute deviation from the global
loudness level estimate.

5. Spectral Flux: A spectral descriptor defined by
the difference between the L2-norm [17] for two
consecutive frames of the magnitude spectrum.

6. Kurtosis: This statistical measure serves as an
indicator of the shape of a distribution and quan-
tifies how much data remains in the tail of a bell
curve.

7. High Frequency: A spectral descriptor computed
using the ’Masri’ harmonic noise to ratio tech-
nique, represented in Equation 3. This descriptor
provides insight into the high-frequency content
of the audio signal.

HFC = |X(n)|2 · k (1)

where |X(n)|, represents the magnitude of the sig-
nal X at a specific point n and k is a constant.

Figure 1 illustrates the interaction of the top two fea-
tures in the explosions, with the x-axis representing the
first principal component and the y-axis denoting the
second principal component.

Notably, the MaxToTotal audio descriptor, reflecting
the temporal envelope, reveals the location of the maxi-
mum amplitude at the beginning, middle, or end. The
lower the pitch at the begining of the temporal envelope
amplitude the more realistic it’s classified.

4 Quantitative subjective evaluation

The multistimulus test consisted of 11 audio questions.
The questions included both open-ended and multiple-
choice formats. The estimated test duration was 20-25
minutes. Feedback was gathered from 22 participants,
all with experience in audio design, ranging in age from
21 to 63. Participants used a rating scale ranging from
0 to 100, evaluating sound samples based on realism
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Fig. 1: Top two PCA’s for explosions category.

criteria. The scoring system was defined as follows: 1-
20 for completely unrealistic, 20-40 for very unrealistic,
40-60 for somewhat unrealistic, 60-80 for good, and
80-100 for realistic.

To ensure data consistency, five participants who did
not rate library samples within the 80-100 range were
excluded.Table 2 summarizes 69 test samples, indicat-
ing the quantity of questions and their corresponding
sample count.

Sound Questions Samples
Explosions 3 7

Pouring Water 2 6
Church Bells 2 6

Pouring Water 2 6
Popping Bubbles 2 6

Table 2: Numbers of questions and samples per sound
class.

For the explosion category we took a step forward com-
paring the standard procedural audio engine model to
the optimization made by [18], where they attempted to
make a more realistic sound by adding more parameters
to the user controllable interface.

4.1 Results per sound class

The results for burning embers, pouring hot water,
church bells, and bubbles after the listening test are

displayed in box plots in figure 2, presenting percep-
tual results with a rating scale from 0 to 100 on the
y-axis and synthesis methods from figure 2 on the x-
axis. Median, confidence levels, outliers, and quartiles
are marked. Notably, library samples didn’t achieve a
perfect 100 rating. Pouring hot water favors the addi-
tive method.

In bell sounds, granular scored lowest, while addi-
tive and additive+modal had similar ratings. Bubbles
favored additive, contrasting with lower-rated addi-
tive+modal. Burning embers rated granular as most
realistic, followed by additive, physically inspired, and
subtractive as least realistic.

Figure 3 focuses on explosion; Setting 3 or the third
optimization way is perceived as superior in a notched
box plot adjusting the procedural audio engine model.
Levene’s test (p=0.0198) revealed unequal variances.
Welch-ANOVA, due to non-normal distribution, found
significant effects of synthesis methods on user percep-
tion (p<0.00001). Table 3 details pairwise comparisons
of synthesis methods on perceptual realism ratings.

Upon analyzing the results presented in Table 3, it is
evident that there are no significant differences in the
ratings for Bubbles sounds across any of the methods
employed. Additionally, the subtractive optimization
with setting 3 exhibits no statistical difference in the
perception of explosion sounds, unlike the other meth-
ods.

5 Qualitative Subjective Evaluation

Additionally, we surveyed participants in each category,
asking the question: "Which attributes do you think can
be enhanced to achieve a more authentic sound?". This
inquiry sought to gather valuable insights into specific
features and potential improvements that could make
synthetic samples more authentic. Figure 4 illustrates
the options perceived by the participants, with the most
frequently mentioned enhancements highlighted in or-
ange for each category. Participants were allowed to
choose more than one option.

The current explosion lacks debris and background
noise, impacting its authenticity. Suggestions for
improvement include incorporating a more powerful
initial impact, increasing low-frequency components,
and adding echo and reverberation. In the case of
church bells, the evaluation involved a single hit at
different frequencies, and recommendations propose
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Fig. 2: Burning embers,bells, water and bubbles result distribution.

Fig. 3: Explosions result distribution.Set1-Opt,set2-opt and set3-opt representations of the optimization models
made by[18]
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Fig. 4: Burning embers, bells, water, and bubbles result distribution.
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Group1 Group 2 Explosion Bubbles Hot Water Church Bells Burning Embers

Granular Real **** o **** **** ****
Granular SubOp 1 o . . . .
Granular SubOp 2 o . . . .
Granular SubOp 3 **** . . . .
Granular Sinusoidal *** . . . .
Granular Subtractive o . . . .
Granular Additive . o ** ** o
Granular Physically Informed . . . . **
Granular Additive+Modal . o o *** .

Real SubOp 1 **** . . . .
Real SubOp 2 **** . . . .
Real SubOp 3 o . . . .
Real Sinusoidal **** . . . .
Real Subtractive **** . . . .
Real Additive . o **** **** ****
Real Physically Informed . . . . ****
Real Additive+Modal . o **** ** .

SubOp 1 SubOp 2 o . . . .
SubOp 1 SubOp 3 **** . . . .
SubOp 1 Subtractive *** . . . .
SubOp 2 SubOp 3 **** . . . .
SubOp 2 Subtractive *** . . . .
SubOp 2 Sinusoidal *** . . . .
SubOp 3 Sinusoidal **** . . . .
SubOp 3 Subtractive ** . . . .

Sinusoidal Subtractive **** . . . .
Physically Informed Additive . . . . **

Additive Additive+Modal . o *** o .

Table 3: Results of pairwise comparison of synthesis methods on perceptual realism rating for each class of sound,
o > 0.05, ∗ <0.05, ∗∗<0.01, ∗∗∗<0.001, ∗∗∗∗<0.0001, .= no comparison made. SubOp= refers to the
different optimizations for the subtractive method.

a more substantial and resonant impact, along with
increased echoes and reverberation for synthetic mod-
els. For burning embers, enhancements should focus
on more hissing, crackling, and the inclusion of addi-
tional echoes and reverberation. Regarding pouring hot
water, suggestions include introducing more gurgling
and hissing sounds, along with increased reverberation,
echo, and prolonged duration. The most common im-
provement mentioned for bubbles is a more pronounced
"pop" sound, coupled with an increased sense of wet-
ness in the environment where the bubbles are situated.

6 Discussion

The results reveal that subtractive models outperform
sinusoidal or granular methods both objectively and
subjectively when reproducing explosion sounds. Con-
versely, additive models, especially those employing

modal synthesis, demonstrate significant effectiveness
in church bell sounds but face limitations in accurately
representing pouring hot water and popping bubbles
sounds, where the additive method proves more realis-
tic.

In instances where the previously analyzed sound syn-
thesis method wasn’t perceived as the most realistic,
further analysis of audio descriptors and perceptual
evaluation suggests potential improvements. To en-
hance realism in church bell sounds, it is recommended
to modify the pitch. For synthesizing popping bubbles
with the additive and modal methods, adjusting the
loudness fluctuation over time emerges as a promising
optimization step. When simulating burning embers,
the initial optimization steps for the additive, physically
informed, and subtractive methods include adjusting
duration, loudness (Effective Duration), and pitch in
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the spectrum. Regarding the pouring hot water method,
participants prefer the additive/modal method, yet their
ratings still fall short of the library sample. The hy-
potheses after the analysis focus on modifying the ef-
fective duration (temporal envelope) and spectral flux.

7 Conclusions

The analysis methodology presented here offers a versa-
tile framework for evaluating the perceived realism of
any sound synthesis method. By systematically exam-
ining a diverse set of audio descriptors, this approach
serves as a foundational step in identifying key param-
eters that can be manipulated to enhance the model’s
realism, akin to the comparison conducted for the proce-
dural engine models. This methodology can be adapted
to assess the authenticity and quality of sound synthe-
sis models, providing valuable insights into the factors
that contribute to the perceived realism of synthesized
audio. The application of this methodology to the eval-
uation of procedural audio models, as outlined earlier,
showcases its adaptability and effectiveness in assess-
ing diverse sound synthesis techniques.

As we delve into the variations of audio descriptors, we
pave the way for improved interpretability and advance-
ments in sound quality. The insights gained from this
study not only contribute to the refinement of sound
synthesis models but also lay the groundwork for future
analyses and evaluations. This, in turn, propels the field
of sound synthesis forward, expanding its applications
and pushing the boundaries of what can be achieved in
synthetic audio production.
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