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ABSTRACT

This paper compares three state-of-the-art stimuli (multitone-pink, MLS, and log-sweep) to simultaneously
deconvolve the impulse responses from several loudspeakers. A hyperparameter optimization algorithm constructs
the stimulus, where the algorithm optimizes the stimulus parameters by minimizing a time domain error between
the actual impulse responses and the simultaneously deconvolved responses over a training dataset. Objective
results are presented for the various stimuli in a test data set that demonstrate the efficacy of each stimulus in the
context of simultaneous deconvolution.

1 Introduction

Loudspeaker-room equalization begins with the acqui-
sition of a loudspeaker-room impulse response, which
entails recording the sound signal produced by a loud-
speaker at a given position to the listener’s location.
The current approach involves extracting the response
hi, j(n), obtained after energizing loudspeaker i with
a stimulus and measuring at microphone position j
([5]-[18]). This process of deconvolution is repeated
for each loudspeaker. Common stimuli employed for
capturing room responses include pink noise which
is commonly used for cinema calibration [19]; maxi-
mum length sequence (MLS) due to its well-understood
mathematical properties [33]; and log-sweep due to its
advantages over other stimuli [21].

However, a drawback becomes evident when dealing

with a larger number of loudspeakers and positions,
as the time needed to deconvolve responses from all
loudspeakers becomes significant. Moreover, perform-
ing repeated measurements to enhance the signal-to-
noise ratio (SNR) contributes to a prolonged calibra-
tion time. Recent strategies to address this limitation
include the work by Majdak et al. [23] and Weinzierl et
al. [24], which involve interleaving or partially overlap-
ping sweep stimuli. Bharitkar [3] proposes a technique
(illustrated in Fig. 1) for simultaneous deconvolution by
exciting all loudspeakers concurrently. The log-sweep
stimulus is optimized using Bayesian optimization, con-
sidering the log spectral distortion metric between the
actual and estimated magnitude responses over differ-
ent durations and circular shifts. This deconvolution
method is validated in real-world scenarios [2], encom-
passing rooms with varying measured SNRs.
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Fig. 1: Presented approach of simultaneous room re-
sponse, hi, j(n), deconvolution for all loudspeak-
ers (LSi; i = 1,2, ...,N) and microphone posi-
tion j.

The key advancements in this paper are (i) incor-
porating impulse response error minimization in the
Bayesian optimization enabling time-delay estimation
and dereverberation, (ii) Bayesian optimization and
comparisons between three popular excitation signals
including the MLS (white), multitone (pink), and log-
sweep for simultaneous deconvolution, (iii) objectively
comparing the three stimuli using statistical analysis
on the test set for generalization ability. Section II sum-
marizes the properties of the three excitation stimuli
used in this paper, the basic principles of simultaneous
deconvolution and the dataset creation approach. Sec-
tion III presents the Bayesian algorithm for optimizing
the excitation stimuli parameters using the impulse re-
sponses for training and testing. Section IV presents
objective results on the modeling performance with
each stimulus over a test set, whereas Section V con-
cludes/summarizes the paper.

2 Excitation Stimulus

2.1 Multitone (pink spectrum)

An input signal utilized for system identification in-
volves a multitone waveform [29]-[32], character-
ized by specific amplitude, frequency, and a stochas-
tic phase arrangement and is expressed as u(t) =

∑
N/2−1
k=−N/2+1 Uke jωkt . The phases ∠Uk are random and

uniformly distributed on [0,2π[. This phase distribu-
tion ensures a signal with random values and an ampli-
tude distribution that tends asymptotically to a Gaus-
sian law when N→ ∞.

2.2 Maximum-length sequence

A Maximum-Length Sequence (MLS) [33] refers to
a periodic signal characterized by two discrete lev-
els, possessing a length of P = 2L− 1, where L is an
integer indicating the sequence length, and P repre-
sents its periodicity. The impulse response is extracted
through correlation methods or the application of the
Fast Hadamard Transform.

2.3 Logarithmic Sine-sweep

In the case of an exponential sweep, [34], assuming ω1
and ω2 being the start and end frequencies, with a total
duration of Tlog seconds, the logarithmic sweep signal
x(t) is

x(t) = sin(
ω1Tlog

log ω2
ω1

(e
t

Tlog
log(ω2

ω1
)
−1)) (1)

whereas the discrete-time equivalent is x1(n) =
(x(n),x(n− 1),x(n− 2), . . . ,x(n− (P− 1)))T , T rep-
resents the vector transpose and P = Tlog/Ts in sam-
ples1,2.

2.4 Simultaneous Deconvolution

The measurement (recording), assuming noiseless
condition, is a linear convolution sum between the
loudspeaker-room response hi and the stimuli xi(n),

y(n) =
N=11

∑
i=1

xi(n)~hi (2)

with

x1(n) = [x(n),x(n−1), . . . ,x(n−P+1)]T

xi(n) = [x(< n− (i−1)M >P), (3)
. . . ,x(< n− (i−1)M−1 >P),

. . . ,x(< n− (i−1)M−P+1)>P]
T ;

(i = 2, . . . ,11)

with < m >P= m modulo P, and hi =
[hi(1),hi(2), . . . ,hi(K)]T is a K-length impulse
response. Bharitkar [3] presents a fast implementation
involving computing the cross-spectrum between
the measurement and excitation stimuli and the

1Ts = 1/ fs = 1/48000 (s), and fs is the sampling frequency
2Tstimuli = Pstimuli/48000, where stimuli are either log-sweep,

MLS, or multitone-pink
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auto-spectrum of the excitation stimuli (appropriately
circularly-shifted) to deconvolve room responses from
loudspeakers excited simultaneously. Specifically,

Sx j ,x j(e
jω) = F{x j(n)}F{x j(n)}∗

Sx j ,y(e
jω) = F{ρ(x j(n),y(n))}= F{x j(n)}F{y(n)}∗

Ĥ j(e jω)) =
Sx j ,y(e

jω)

Sx j ,x j(e jω)

ĥ j = F−1{Ĥ j(e jω)} (4)

2.5 Dataset Creation

The room impulse responses used in this paper are
from MARDY [35]3 and MeshRiR [36]4 databases.
The MARDY database has 72 loudspeaker-room re-
sponses obtained in a variable acoustics room with a
Genelec 1029A loudspeaker. In contrast, MeshRiR
has 14112 responses from a room with an array of
32 loudspeakers and a rectangular grid of 21×21 mi-
crophone positions5. Based on an augmented dataset
(created by combining both databases), the number
of 11-channel responses available for simulations is
binomial

(14112+72
11

)
≈ 1038.

2.6 Bayesian Optimization

Bayesian optimization [39] is a global hyperparameter
optimization technique, constrained on the bounds of
the hyper-parameters, and is best suited for optimiza-
tion with 20 or fewer hyper-parameters. The technique
builds a surrogate function for the objective and quan-
tifies the uncertainty in that surrogate using Gaussian
process regression. Additionally, several parameters
are required for initialization, including the type of ac-
quisition function which guides the sampling for the
optimal hyperparameters [40]. Recent advances can be
found in [41]. In our optimization, we set 11 hyperpa-
rameters: (i) duration P, and (ii) right circular shifts Mi
(i = 1, . . . ,10).

3 Bayesian Optimization of Stimuli
Parameters

For Bayesian optimization, a “training” dataset of size
T R is created with 11-channel combinations of room

3https://www.commsp.ee.ic.ac.uk/ sap/
4https://github.com/sh01k/MeshRIR
5The number of responses is 32×21×21 = 14112

impulse responses from the MARDY and MESHRiR
databases. The responses are input to a Bayesian opti-
mization process that optimizes the duration and inter-
channel shifts by minimizing a metric ψ̄

bayes
SD , where

ψ̄
bayes
SD =

1
R

R

∑
k=1

√√√√ 1
11

11

∑
j=1
‖ĥ(k)

j −h(k)
j ‖2

2 (5)

is the root-mean-square error (RMSE) averaged over
the training set of size R = T R. The box constraints
for the search for the optimal duration and circular
shifts during the Bayesian optimization process are
{Plow,Pup} samples and {Mi,low,Mi,up} samples, re-
spectively. Algorithm 1 is used for the optimization of
the 11-channel stimuli hyperparameters, duration (P̂)
and circular shift (M̂i; i= 1, . . . ,10), where the construc-
tion of the stimuli during each Bayesian optimization
evaluation is given in (4).

Algorithm 1: Bayesian Optimization (BO) for Hy-
perparameter Search for Stimuli
Result: Stimuli(P∗,M∗i ),

i = 1, . . . ,10;minimum : ψ̄
bayes
SD

1 Initialize bayesopt: Construct base stimuli x1(n)
(4), Gaussian Process Active Set Size=GPA,
Number of Seed Points=NP, Exploration
Ratio=ER, box constraints {Plow,Pup} samples
and {Mi,low,Mi,up} samples, T R, and true
MARDY and MESHRiR responses
h(k)

j ; j = 1, . . . ,11;k = 1,2, . . . ,T R ;
2 while maxTime ≤ T seconds do
3 For each P̂ and M̂i candidate, construct

11-channel stimuli using (4);
4 Compute the convolution sum (3) using true

responses and excitation stimuli with
candidate P̂ and M̂i;

5 Estimate the responses using (5);
6 Update hyperparameters (P̂,M̂i) using

bayesopt to minimize ψ̄
bayes
SD using (6);

7 end
8 T ∗stimuli = P∗/48000 (seconds);

4 Results

For each stimuli, the box constraints during the opti-
mization for the duration and circular shift were set em-
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pirically as {Plow,Pup}= {5,30}×48000 (samples)6,
{Mi,low,Mi,up}= {4096,131072};∀i (samples). Addi-
tionally, GPA7 = 100, ER8 = 0.5 [38], NP9 = 10, and
T = 259,200 (s). The training set size is T R = 500,
and the test set is of size T S = 1000, where each sam-
ple comprises 11 randomized responses per the dataset
creation approach described in Sec. III.

4.1 Objective Results

As shown in Table 1, the shortest duration stimuli is log-
sweep, which yields the smallest training set RMSE
ψ̄
∗,log-sweep
SD = 6.775× 10−6, whereas the RMSE for

multitone-pink is ψ̄
∗,multitone-pink
SD = 9.3592×10−5, and

the MLS ψ̄
∗,MLS
SD = 8.943×10−5. Also shown in Table

1 are the individual channel optimal right circular-shift
value Mi (relative to channel 1) for each stimulus. The
MLS and multitone-pink durations are similar. The
advantage of short-duration stimuli includes a lower
probability of insertion of impulsive noise during exci-
tation. The present paper does not address immunity to
steady-state noise (immunity which may be achieved
using stimuli averaging). The generalization ability for
each of the optimized stimuli is shown in Fig. 3 for
the test set of size T S = 1000 where the y-axis is the
averaged RMSE (computed using (6) with R = T S),
with the 95% confidence interval of the mean, and ex-
pressed in dB. A log-sweep with random shift Mi and
with Trand-sweep = T ∗log-sweep = 5.2379 (s) result is also
shown in Fig. 3 with the worst performance compared
to the optimized stimuli. The best objective perfor-
mance is achieved using the log-sweep stimuli with
marginal differences in the 95% confidence interval
(∆CI,log = 1.16 dB, compared with ∆CI,multi = 0.58 dB,
∆MLS,CI = 0.46 dB, ∆rand-sweep,CI = 0.43 dB).

5 Conclusions & Future Directions

This paper compares three widely-used stimuli for
simultaneously exciting and deconvolving room re-
sponses. Each stimulus is optimized using Bayesian

6Based on footnote 3, the Tstimuli is box-constrained {5,30} (sec-
onds)

7Fit Gaussian Process model to GPActiveSetSize or fewer points
(using few points leads to faster GP model fitting, at the expense of
possibly less accurate fitting)

8Parameter that balances between exploration and exploitation
during global function optimization

9Number of initial evaluation points, specified as a positive in-
teger, wherein bayesopt chooses these points randomly within the
variable bounds

Table 1: Bayesian optimized parameters for stimuli

Param. log-sweep multitone MLS

T ∗stimuli 5.2379 (s) 28 (s) 21.845 (s)
M∗1 53886 78924 24308
M∗2 85006 48686 85296
M∗3 53256 64758 118423
M∗4 89316 66214 46918
M∗5 101774 83749 69150
M∗6 78699 109905 130623
M∗7 61029 6280 14266
M∗8 92437 103992 10699
M∗9 44056 55934 46022
M∗10 18460 7271 5154

optim-sweep optim-MLS optim-multi rand-sweep

Stimuli
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Fig. 2: Results from statistical analysis on etest-set
dB .

techniques for their duration, and circular shift amounts
over a training dataset for an ITU 11-channel setup.
The dataset is formed by augmenting the MARDY
and MeshRiR databases creating a large corpus of 11-
channel combinations. The objective performance (du-
ration, MSE, and noise-robustness) demonstrates that
log-sweep is the best candidate among the three stimuli
over the test set using objective analysis. Future work
will be done in the context of noise robustness and sub-
jective preference of the stimuli. It may be possible
to interpret the results using eigen-decomposition of
various stimuli which will also be explored, along with
comparisons with PSEQ [27] and [28].
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