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ABSTRACT

The use of neural networks for modeling and interpolating binaural room impulse responses (BRIRs) is investigated
for facilitating spatial audio applications that require head tracking in multiple degrees of freedom. A deep neural
network model is adopted from an architecture originally proposed for neural representation problems to predict
unknown BRIRs that contain salient early reflection peaks, given head coordinates. Instead of its original time-
domain formulation, a frequency-domain formulation is proposed to enhance the model efficiency and flexibility
for band-limited BRIRs. Both model formulations are evaluated with measured and simulated BRIRs in terms of
modeling accuracy and interpolation performance, respectively. It is shown that the frequency-domain formulation
is more effecient at modeling band-limited BRIRs than its time-domain counterpart as the former only learns the
partial frequency spectrum, and that models with both formulations significantly outperform conventional methods
for interpolating sparse BRIRs.

1 Introduction

The use of binaural room impulse responses (BRIRs)
has been ubiquitous in many spatial audio applications.
For headphone-based reproduction, BRIRs mainly
serve as audio filters that simulate or reproduce an
immersive and perceptually plausible sounding envi-
ronment; for loudspeaker-based applications such as
binaural reproduction with crosstalk cancellation [1, 2]
and personal sound zone reproduction [3, 4], they are
utilized to approximate the “plant” acoustic transfer
functions of the system, based on which audio filters
are designed to and achieve the desired system response

at listeners’ ears. It is often necessary in both cases
to update the BRIR with head tracking in multiple
degrees-of-freedom (DoFs, referring to head translation
and rotation) in order to either enhance the immersion
or improve the filter robustness against possible head
misalignments [5].

When compensating BRIRs for head movements in
multiple DoFs, one can synthesize the BRIR by com-
bining the corresponding anechoic head-related im-
pulse response (HRIR) and the room impulse response
(RIR) captured either with a multichannel microphone
array or a single microphone [6, 7, 8]. However, such
a synthesized BRIR is usually only suitable for au-
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ralization applications whose main goal is to achieve
perceptual plausibility [9]. In comparison, a BRIR
that better represents the actual system response (or
more physically accurate) is required for loudspeaker-
based applications [2, 4], and therefore interpolating
between pre-measured BRIRs is more appropriate. We
will mainly focus on the interpolation approach in this
paper.

Typically, thousands of acoustic measurements are re-
quired for covering a wide range of head movements
for a single listener. As an effort to reduce the num-
ber of measurements and the space for data storage,
the modeling and interpolation of HRIRs have firstly
been investigated and various methods have been pro-
posed, including linear and spline interpolation [10],
pole/zero modeling [11, 12], parametric filter modeling
[13, 14], spherical harmonics decomposition [15], spa-
tial principle component analysis [16, 17], and machine
learning-based methods [18, 19]. Compared to HRIRs,
BRIRs contain additional salient peaks due to room
reflections, which vary greatly with head movements
in multiple DoFs. Instead of traditional methods, other
DSP-based methods [20, 21] that identify and align
early reflection peaks based on dynamic time warping
[22] were proposed, but often at a cost of additional
computation for peak detection.

In this paper, we utilize deep learning to model and
interpolate BRIRs, rather than relying on data-specific
audio processing techniques. More specifically, we
train a deep neural network (DNN) that takes head
coordinates as inputs and predicts the early part of the
corresponding BRIR. The DNN architecture is inspired
by the work of Richard et al. [19] and the original NeRF
paper [23], which introduced the model for solving
the view synthesis problem in the field of computer
vision. In [19], the DNN was evaluated for the task
of estimating and interpolating anechoic HRIRs that
only vary with head rotations. Here, we modify the
DNN architecture to allow for better parallelization and
extend the use of the proposed DNN to BRIRs that
contain strong early reflections and vary with not only
head rotations but also head translations. Furthermore,
we propose a new frequency-domain formulation of
the DNN by changing the output and the loss function,
which proves to be more efficient than the traditional
time-domain counterpart in the case of modeling band-
limited BRIRs. In addition, we introduce principles for
model optimization based on Fourier analysis, which
provide physically meaningful guidelines for tuning

Fig. 1: Illustration of the DNN structure and further
processing to generate BRIRs based on the
frequency-domain formulation.

the DNN. The DNN models with both formulations
are further compared against conventional methods to
evaluate their capability of interpolating sparse BRIRs.

2 Model Formulation

Given a fixed sound source in a room, a typical BRIR
that varies in multiple DoFs can be expressed as a
function of head center position, head orientation, and
time, with respect to the left or right ear of the listener:

hL,R = hL,R(r,Φ, t), (1)

where r=(x,y,z) denotes the 3D coordinate of the head
center and Φ = (φ ,θ) denotes the head orientation (in
this case the azimuth and elevation angles). In [19], the
proposed DNN takes both position coordinates and a
time index as inputs and predicts the t-th sample of the
BRIR. Given that 1) the spatial and temporal variables
are often separable in the description of a wave pressure
field, and 2) unlike spatial variables which are continu-
ous and require interpolation, the temporal variable in a
digital audio signal is discrete by nature and can be di-
rectly used as the index of a BRIR vector, we propose a
DNN architecture that learns the temporal dependency
implicitly and only takes the spatial coordinates as in-
puts. This allows for the generation of the entire BRIR
vector over a single model inference, making the model
more suitable for real-time applications.
The general structure of the DNN (shown in Fig. 1) is
similar to that in [19], also known as multi-layer percep-
trons (MLPs). First, an input layer takes the coordinate
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vector p = (r,Φ) and pass it to a positional encoding
layer that maps the inputs to higher dimensional Fourier
features

γ(p) = {sin(2n
π p),cos(2n

π p)},n = 0,1, · · · ,N. (2)

It has been shown [24] that such a mapping enables the
DNN to better fit high-frequency variation in the data.
These features are passed to a series of fully-connected
layers with the ReLU activation function, and finally to
an output layer that yields the entire BRIR vector. As
the BRIR is expressed in the time domain, a common
choice for the loss function is the l2 loss in the time
domain between the estimated and the ground truth
BRIRs:

L = ∑
t
|ĥL,R(t)−hL,R(t)|2, (3)

where the hat symbol denotes the estimated BRIR.
However, as the early reflection part in the BRIR sig-
nificantly increases the output vector length, such a
formulation can be computationally expensive. More-
over, only a partial spectrum of the BRIR is of concern
in certain audio applications, and therefore learning
the entire time-domain vector can lead to modeling re-
dundancy (unnecessary storage and computation cost).
An alternative to learning the time-domain representa-
tion would be to learn the partial (or full) frequency
spectrum of the BRIRs, which can be obtained by tak-
ing their Fourier transform. The corresponding loss
function is then given by

L = ∑
ω

(|Re{ĤL,R(ω)−HL,R(ω)}|2

+ |Im{ĤL,R(ω)−HL,R(ω)}|2), (4)

where HL,R(ω) denotes the corresponding complex
transfer function of the time-domain BRIR hL,R(t), ω

denotes the angular frequency, and Re{·} and Im{·}
denote taking the real and the imaginary part, respec-
tively. The magnitude and phase representation of the
complex transfer function is not adopted due to the
issue of phase wrapping. The final BRIRs are gener-
ated by assembling the complex transfer function from
the model output and then taking the inverse Fourier
transform, as shown in Fig. 1. In this formulation, we
keep only the relevant frequency band in the learning
process, therefore improving the modeling efficiency.

Fig. 2: Measurement setup for BRIR data collection.
Note that only one loudspeaker in the photo
was used for the measurement.

3 Evaluation

3.1 BRIR Datasets

We used both measured and simulated BRIR datasets
to evaluate the performance of proposed DNN models.
The datasets share the same scale of head movements
and spatial resolution, but differ in room acoustics such
as reverberation time, in order to diversify testing con-
ditions.

Measured BRIRs. We conducted in-house BRIR mea-
surements for a fixed sound source and with both head
translations and rotations of a dummy listener. For
simplicity, the head translation occurred only in one
axis, with a grid of (0:1:90) cm; the head was hor-
izontally rotated for a full circle at each new posi-
tion, with a resolution of 1 degree. In total, there are
91×360 = 32760 measured BRIRs with each contain-
ing two channels. The measurements were conducted
with one B&K Head and Torso Simulator (HATS, Type
4100) with in-ear binaural microphones (Theoretica
Applied Physics BACCH-BM Pro) in a typical listen-
ing room (RT60 = 0.24 s in the range 1300-6300 Hz).
A custom made mechanical translation stage and a
turntable (Outline ET250-3D) were used to translate
and rotate the dummy head, respectively, for automated
measurements (see Fig. 2 for the setup). The BRIRs
were measured using synchronized exponential sine
sweep (ESS) [25] signals at 48 kHz sampling rate, with
each sweep lasting 1 sec.
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Fig. 3: Examples of measured (top) and simulated (bot-
tom) BRIRs. Left: time-domain representation.
Right: corresponding magnitude spectrum.

Simulated BRIRs. We simulated BRIRs using the
RAZR room acoustics simulator [6], under a shoe-
box room model with dimensions of 5×4×3 m and
a RT60 of 1 s at all frequency bands. An omnidirec-
tional source was placed 1.5 m in front of the listener,
and the early part of the BRIR was generated by con-
volving the spatial room impulse responses synthesized
from the image source model (see [6] for details) and
the corresponding HRIRs measured in-house [26]. The
BRIRs were computed at the same head movement grid
and resolution as for the measured BRIRs, and also at
48 kHz sampling rate.

In this study, we truncated all BRIRs to the first 2048
samples (approximately 40 ms at 48 kHz sampling
rate) to include only early reflections, as the late re-
verb tails can be assumed to be stochastic and therefore
efficiently synthesized [6]. For measured BRIRs, we
performed band-pass filtering between 150 Hz and 7
kHz to exclude low-frequency noise in the room and
prevent spatial aliasing as well as low signal-to-noise
ratio at high frequencies due to possible head occlusion.
Note that such processing steps are also of practical
value as they are also used in loudspeaker-based ap-
plications (e.g., personal sound zone reproduction [4])
in order to improve the robustness of filters against
transfer function mismatches. The same filtering was
applied to the simulated BRIRs to allow for comparison
between the two datasets. The resulting BRIRs were
then used for model evaluation. Fig. 3 gives examples
of one measured and one simulated BRIRs.

3.2 Model optimization

We introduce two aspects of DNN model optimization
based on the particular setup of the BRIR datasets:

Input normalization. As proposed in [23], the inputs are
normalized to an interval of [−1,1] before the Fourier
encoding layer. Although this applies to the case of
modeling HRIRs with only head rotations, for BRIRs
that involve head translations, such a normalization
would lead to modeling errors near the two boundaries
due to the aperiodic nature of translation (the Gibbs
phenomenon). Therefore, we mapped the translational
coordinate x to a slightly narrower range, [−1+∆,1−
∆], where ∆ corresponds to the spacing between two
adjacent positions. The same [−1,1] interval was used
for normalizing the rotation angle φ .

Fourier encoding order. It is intuitive to understand that
the different components in the Fourier encoding layer
represent information at different spatial frequencies.
When fitting a dataset with limited spatial resolution, it
is important to find an optimal encoding order to avoid
possible spatial aliasing [27]; when the data is band-
limited, it is also helpful to optimize the encoding order
to minimize model redundancy. Here we only consider
the case of head translation as an approximation since it
has lower spatial resolution compared to head rotation.
To determine the maximum encoding order Nmax, we
first re-express the phase term in Eq. 2 with equivalent
wavenumber k̃ and translational coordinate x,

2n
π p = k̃x, (5)

where p is the normalized position coordinate, and for
translations we have

p =
x

L/2
, (6)

as the normalization maps x from [−L/2,L/2] to
[−1,1]. Combining the two equations above, the equiv-
alent wavenumber can be expressed as

k̃ =
2n+1π

L
. (7)

First, according to Nyquist sampling theorem, for a spa-
tial sampling resolution ∆x, the maximum wavenumber
is given by

kmax,1 =
π

∆x
. (8)
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In addition, considering the highest frequency of the
effective bandwidth fmax, we also have

kmax,2 =
2π fmax

c
, (9)

where c denotes the sound speed. In practice, we
choose the lower value of the two, which is then com-
bined with Eq. 7 and yields the maximum encoding
order Nmax

Nmax = bmin{log2(
L

2∆x
), log2(

L fmax

c
)}c, (10)

where b·c denotes the floor function. For our dataset,
we have L = 0.9 m, ∆x = 1 cm, fmax = 7 kHz, and
c = 340 m/s, and therefore Nmax = 4.

3.3 Metrics

We adopt two metrics to evaluate the DNN perfor-
mance: 1) the signal-to-distortion ratio (SDR), which
quantifies the modeling accuracy in the time domain:

SDR = 10log10(
‖hL,R(t)‖2

‖hL,R(t)− ĥL,R(t)‖2
), (11)

and 2) the spectral distortion (SD), which quantifies
the magnitude difference between the ground truth and
the estimated BRIR in the frequency domain, first as a
function of the frequency ω:

SDω = 10log10(
|HL,R(ω)|2

|ĤL,R(ω)|2
), (12)

and then logarithmically averaged:

SD =
∑ω |SDω |/ω

∑ω 1/ω
. (13)

4 Results

4.1 Modeling efficiency

We first compare the time-domain and frequency-
domain formulations in terms of modeling efficiency
for band-limited BRIRs. All DNNs evaluated have an
encoding order of N=4 and 4 fully-connected layers,
but vary in the hidden layer size (and therefore the
number of trainable parameters). The output of the
time-domain model is the concatenated BRIR vectors

of left and right channels, with a size of 4096; the out-
put of the frequency-domain model is the concatenated
real and imaginary parts of the two complex transfer
functions only in between 150 Hz and 7 kHz, yielding
a total size of 1168. All DNNs were trained on 70%
of the entire dataset (randomly selected from either
measured or simulated dataset) and evaluated on the
remaining 30%.

Fig. 4 shows the SDR and SD as a function of the
number of parameters that corresponds to different
hidden layer sizes. Both metrics are averaged across
all the evaluation samples and across the two chan-
nels of BRIRs. First, comparing the time-domain and
frequency-domain models with the same hidden layer
size, we note that the frequency-domain model achieves
similar or better SDR and SD performance as the time-
domain model, but with a much smaller number of
parameters. The frequency-domain model leads to bet-
ter SD performance than the time-domain one for small
models (e.g., with a layer size of 32 or 64) in both
datasets as the latter needs to learn a much larger output
vector; the difference between the two models becomes
smaller as the model size increases. Comparing results
from two datasets, we note that although the depen-
dency of model performance on the layer size is similar
in both datasets, the model performance is generally
worse (lower SDR and higher SD) in the simulated
dataset than in the measured dataset. It is likely due
to the longer reverberation time (1 s compared to 0.24
s in the measured dataset) and more early reflection
peaks, as can be seen in Fig. 3. In general, both mod-
els efficiently compress the BRIR information while
achieving a high level of modeling accuracy. For ex-
ample, the frequency-domain model with a layer size
of 512 only requires 1.4 M parameters, which equiva-
lently compresses the original dataset (38.3 M floats)
by 96.3%.

4.2 Interpolation performance

Next, we evaluate the capability of the DNN models
to interpolate from known (trained) BRIRs. Both time-
domain and frequency-domain DNN models used for
evaluation have a fixed size of 4 layers, each with 512
hidden units. We downsample the BRIRs to a spa-
tial resolution of 5 cm and 5 degrees instead of using
the original datasets, yielding a total of 1296 BRIRs,
to evaluate the performance on sparse data. We then
vary the proportion of the training set in the downsam-
pled dataset and use the remainder for evaluation. We
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Fig. 4: Model performance in terms of SDR and SD, evaluated for both the frequency-domain and time-domain
models on the measured (top) and simulated (bottom) datasets. The data points in both curves represent
evaluated DNNs with different hidden layer sizes, which are marked next to each data point in the plots.

Fig. 5: Interpolation performance in terms of SDR and SD, evaluated for the frequency-domain and time-domain
DNN models, the nearest neighbor method, and the bilinear interpolation method. The evaluation was
performed on the downsampled version of the measured (top) and simulated (bottom) datasets.
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choose the nearest neighbor and bilinear interpolation
methods as baselines for comparison. The bilinear in-
terpolation method is generalized for an arbitrary grid
by polynomial fitting as the training set is randomly
selected and does not follow a uniform spatial grid; in
addition, the bilinear interpolation automatically falls
back to the nearest neighbor whenever the predicted
points are located on the boundaries. Fig. 5 shows the
SDR and SD as a function of the training set propor-
tion, for four interpolation methods evaluated on both
measured and simulated datasets. Here, the SDR met-
ric is associated with interpolation accuracy in phase,
and the SD metric represents the magnitude accuracy.
We note that for SDR, both DNN models outperform
the two baseline methods, and the difference between
the DNN models and the baselines increases as more
training data is available for interpolation. The bilinear
interpolation method yields worst SDR performance
because direct summation of BRIRs without peak align-
ment would introduce errors to the location of onsets
and reflection peaks, resulting in poor phase accuracy.
The SD performance of the both DNN models is worse
than the baselines when there are few training samples,
and gradually improves as more training samples are
available, until eventually it reaches the level of nearest
neighbor at 50% of the training proportion. This is
because the evaluated DNN models are likely underfit
given few known BRIRs; we expect better performance
of such models when more training data becomes avail-
able.

5 Conclusion

In this paper, we examined the use of DNNs for mod-
eling known BRIRs and interpolating unknown sparse
BRIRs that vary with head movements in multiple de-
grees of freedom, based on a DNN architecture origi-
nally proposed for neural representation problems and
its adaptation for modeling HRIRs. More specifically,
we implemented DNN models in both time-domain
and frequency-domain formulations and evaluated their
performance with measured and simulated BRIRs. In
general, both DNN models were able to model BRIRs
that contain dense reflections with relatively low distor-
tion and a high data compression rate; the frequency-
domain formulation of the DNN was shown to be twice
as efficient as its time-domain counterpart for band-
limited BRIRs. Such advantages can facilitate many
spatial audio applications that require head-tracked ren-
dering but have limitations in storage and/or computa-

tion. In terms of interpolating among sparse BRIRs, we
also found the DNN models also to have better perfor-
mance than traditional interpolation methods such as
nearest neighbor and bilinear interpolation when there
are sufficient training samples. However, as pointed
out previously, we note that the performance of DNN
models can be largely influenced by the choice of hy-
perparameters, such as the normalization of input coor-
dinates, the Fourier encoding order, and the model size.
Therefore, it is important to optimize the DNN model
for the the specific BRIR dataset in order to balance
the trade-off between the modeling accuracy and the
efficiency.

References

[1] Choueiri, E., “Binaural audio through loudspeak-
ers,” in A. Roginska and P. Geluso, editors, Im-
mersive sound: the art and science of binaural
and multi-channel audio, chapter 6, pp. 124–179,
Taylor & Francis, 2018.

[2] Majdak, P., Masiero, B., and Fels, J.,
“Sound localization in individualized and non-
individualized crosstalk cancellation systems,”
The Journal of the Acoustical Society of Amer-
ica, 133(4), pp. 2055–2068, 2013.

[3] Betlehem, T., Zhang, W., Poletti, M. A., and Ab-
hayapala, T. D., “Personal sound zones: Deliv-
ering interface-free audio to multiple listeners,”
IEEE Signal Processing Magazine, 32(2), pp. 81–
91, 2015.

[4] Qiao, Y. and Choueiri, E., “The Performance of A
Personal Sound Zone System with Generic and In-
dividualized Binaural Room Transfer Functions,”
in Audio Engineering Society Convention 152,
Audio Engineering Society, 2022.

[5] Qiao, Y. and Choueiri, E., “Optimal Spatial
Sampling of Plant Transfer Functions for Head-
Tracked Personal Sound Zones,” in Audio Engi-
neering Society Convention 154, Audio Engineer-
ing Society, 2023.

[6] Wendt, T., Van De Par, S., and Ewert, S. D.,
“A computationally-efficient and perceptually-
plausible algorithm for binaural room impulse
response simulation,” Journal of the Audio Engi-
neering Society, 62(11), pp. 748–766, 2014.

AES 155th Convention, New York, USA, 2023 October 25–27
Page 7 of 9



Qiao and Choueiri Neural modeling and interpolation of BRIRs

[7] McCormack, L., Pulkki, V., Politis, A., Scheureg-
ger, O., and Marschall, M., “Higher-order spatial
impulse response rendering: Investigating the per-
ceived effects of spherical order, dedicated diffuse
rendering, and frequency resolution,” Journal of
the Audio Engineering Society, 68(5), pp. 338–
354, 2020.

[8] Arend, J. M., Garí, S. V. A., Schissler, C., Klein,
F., and Robinson, P. W., “Six-degrees-of-freedom
parametric spatial audio based on one monaural
room impulse response,” Journal of the Audio
Engineering Society, 69(7/8), pp. 557–575, 2021.

[9] Lübeck, T., Arend, J. M., and Pörschmann, C.,
“Binaural reproduction of dummy head and spher-
ical microphone array data—A perceptual study
on the minimum required spatial resolution,” The
Journal of the Acoustical Society of America,
151(1), pp. 467–483, 2022.

[10] Nishino, T., Kajita, S., Takeda, K., and Itakura,
F., “Interpolating head related transfer functions
in the median plane,” in Proceedings of the 1999
IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics. WASPAA’99 (Cat.
No. 99TH8452), pp. 167–170, IEEE, 1999.

[11] Runkle, P., Blommer, M., and Wakefield, G., “A
comparison of head related transfer function inter-
polation methods,” in Proceedings of 1995 work-
shop on applications of signal processing to audio
and accoustics, pp. 88–91, IEEE, 1995.

[12] Watanabe, K., Takane, S., and Suzuki, Y., “In-
terpolation of head-related transfer functions
based on the common-acoustical-pole and residue
model,” Acoustical science and technology, 24(5),
pp. 335–337, 2003.

[13] Ramos, G. and Cobos, M., “Parametric head-
related transfer function modeling and interpola-
tion for cost-efficient binaural sound applications,”
The Journal of the Acoustical Society of America,
134(3), pp. 1735–1738, 2013.

[14] Breebaart, J., Nater, F., and Kohlrausch, A.,
“Spectral and spatial parameter resolution require-
ments for parametric, filter-bank-based HRTF pro-
cessing,” Journal of the Audio Engineering Soci-
ety, 58(3), pp. 126–140, 2010.

[15] Zhang, W., Abhayapala, T. D., Kennedy, R. A.,
and Duraiswami, R., “Insights into head-related
transfer function: Spatial dimensionality and con-
tinuous representation,” The Journal of the Acous-
tical Society of America, 127(4), pp. 2347–2357,
2010.

[16] Xie, B.-S., “Recovery of individual head-related
transfer functions from a small set of measure-
ments,” The Journal of the Acoustical Society of
America, 132(1), pp. 282–294, 2012.

[17] Zhang, M., Ge, Z., Liu, T., Wu, X., and Qu, T.,
“Modeling of individual HRTFs based on spatial
principal component analysis,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Process-
ing, 28, pp. 785–797, 2020.

[18] Gebru, I. D., Marković, D., Richard, A., Krenn,
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