
Audio Engineering Society

Convention Express Paper 138
Presented at the 155th Convention 

2023 October 25–27, New York, USA

This Express Paper was selected on the basis of a  submitted synopsis that has been peer-reviewed by at least two qualified 
anonymous reviewers. The complete manuscript was not peer reviewed. This Express Paper has been reproduced from the 
author’s advance manuscript without editing, corrections or consideration by the Review Board. The AES takes no responsibility 
for the contents.  This paper is available in the AES E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this 
paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society.

Loudspeaker position identification using human speech
directivity index
Adrian Celestinos1, Carren Zhongran Wang1, and Victor Manuel Chin Lopez2

1DMS Audio, Samsung Research America, USA.
2SRT, Samsung, Mexico.

Correspondence should be addressed to Adrian Celestinos (a.celestinos@samsung.com)

ABSTRACT

A regular user of a multichannel loudspeaker system in typical living rooms sets the loudspeakers in a non-uniform
manner, with angles and distances that don’t necessarily follow the recommended ITU-R BS.2159-4 standard.
Assuming a multichannel audio system equipped with N number of loudspeakers and M very near-field (NF)
microphones attached to each loudspeaker, the user location with respect to the loudspeakers can be estimated by
utilizing a supervised machine learning (ML) model. Two neural networks (NN) were trained with the human
speech directivity index (DI) computed by room simulations, where the sound source was the typical directivity
radiation pattern of human speech, and the receivers were the NF microphones attached to the loudspeakers. The
distances between loudspeakers and the DI data was combined as input for the two NN models. One network
was dedicated to estimate distances from loudspeaker to user, and the other network was dedicated to the angle
estimation. The results shown a 95% confidence interval (CI) of ±1.7 cm and a CI of ±7 degrees for the incidence
angle.

1 Introduction

Often a typical user of a multichannel loudspeaker
sound reproduction in regular living rooms locates the
loudspeakers in a non-uniform manner, with angles that
do not necessarily follow the recommendation ITU-R
BS.2159-4 standard [1], and with inconsistent distances
from each loudspeaker to the user. By identifying the
physical loudspeaker location, a spatial correction can
thus be applied to recreate the artistic intention of the
producer. For example, the differences in arrival time

from each loudspeaker to the user can be compensated
adding digital delays so all loudspeakers sound waves
arrive a the same time to the user.

More elaborated methods can be applied to correct
for the spatial perception for non-standard loudspeaker
positions [2, 3]. In [4], Moulin et al. presented a per-
ceptual evaluation of the compensation suggested by
the MPEG-H 3D audio encoder, detailed in standard
ISO/IEC: 23008-3 [5], for loudspeaker misplacement
from the standard positions. The purpose of this study
is to find out if it is possible to exploit the human speech
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directivity pattern in order to locate the position of loud-
speakers and user head orientation for calibration of
a standard multichannel sound reproduction system.
It is well known that humans communicate better by
talking facing to each other, this is because we do not
radiate sound uniformly around the head, more energy
is radiated forward than backwards due to the mouth
location in the head. In [6], detailed measurements of
sound fields measured in anechoic conditions around
human talkers were reported. In a later paper the dy-
namic directivity of humans when speaking or singing
was studied [7]. Several studies have been carried out
analysing the directivity patterns of human speech.

In this study it was assumed a multichannel audio sound
reproduction system equipped with N number of loud-
speakers and M very near-field (NF) microphones at-
tached to each loudspeaker placed in a room around
a human speaker as source. Room simulations were
carried out to recreate human voice commands in dif-
ferent rooms using not standard loudspeaker positions
around the user. Then the DI was extracted from a
voice command recorded in anechoic conditions and
convolved with the simulated RIRs. Machine learning
(ML) was employed to learn the relationship between
the DI and the position of the loudspeakers with respect
to the user orientation.

2 Methods

In this section the methods utilized in this study are
presented, first the directivity extraction is explained,
after the machine learning networks and training, then
the room simulations, loudspeaker setup and flow pro-
cessing are detailed.

2.1 Directivity Index

The human voice presents a unique directivity pattern
which is frequency, angle/direction and distance depen-
dent; the computed DI carries that information out. The
DI represents an acoustical energy ratio of one specific
direction to all directions. In Eq. 1, (adapted from [8])
the directivity index is described,

DI(w) = 10 · log10
|H0(w)|2

1
N ∑

N−1
n=0 |Hn(w)|2

, (1)

where the nominator is the acoustical energy computed
from H sound pressure, radiated towards 0◦, and the
denominator is the average energy radiated from all n
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Fig. 1: Loudspeaker, room and NF microphones setup.
Blue arrows represent the distance from loud-
speaker L to NF microphones.

directions. N is the total number of directions and w
is the angular frequency w = 2π f , were f are discrete
frequency bands.

2.2 Neural Networks

Typically, the term artificial intelligence (AI) is used
when a machine emulates cognitive functions that hu-
mans associate with other human minds, such as learn-
ing and problem solving. In this paper we explore the
use of machine learning to solve and learn the rela-
tionship between the human speech directivity index
(DI) recorded by microphones attached to loudspeakers
in a typical multichannel surround loudspeaker setup.
The positions of the loudspeakers were expressed in
polar coordinates using incidence angle and distance
to the user which is the origin of the polar coordinate
system. More specifically we used two feed forward
neural networks in MATLAB [9], to automatically esti-
mate the position of the loudspeakers around the user
in the room.

2.2.1 Feed-forward Neural Network

The Feed-forward neural network (FFNN) is one of the
first successful artificial neural networks and is known
for its simplicity. The information is only processed
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Fig. 2: Room simulation setup. Left plot, coordinate system view. Right plot, 3D room source and receivers
locations. The red dot indicates user position, blue dots receiver positions.

forward in the network. As the universal approximation
theorem describes, using one single hidden layer with
enough hidden neurons can approximate any continu-
ous function [10]. The neural network (NN) applied
here consists of two network models, one for the dis-
tance to the user, and one for the incidence angle. The
supervised training of the NN was performed with DI
data computed from human speech in-room simulations
and the actual distance and angle coordinates from each
loudspeaker to the user.

2.3 Room Simulation Model

A simulation model was utilized to replicate a typical
human speech recorded by receivers placed in typical
loudspeaker positions around the source (user).The sim-
ulation software MCRoomSim described in [11] mod-
els both specular and diffuse reflections in a shoe-box
type. The model runs in Matlab and is based on the im-
age source method algorithm which provides accurate
direction and timing of the primary reflections. With
this model it is possible to simulate room impulse re-
sponses (RIR) and microphone arrays with arbitrary
directional sensitivity and large numbers of receivers.
The software package includes typical female and male
directivity which was included for the source in the
simulations. Since the NF microphones are attached
to the loudspeakers very close to the driver, their re-
sponse would be affected by the loudspeaker baffle. In
the simulation model the NF microphone directivity
was included. This was determined by using a finite
element model of the loudspeaker geometry.
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Fig. 3: Simulated RIR corresponding to the Figure 2
room-receiver setup.

A customized room generator was used to create shoe-
box room setups of various sizes. Each setup has ma-
terial absorption coefficients chosen from a selection
pool, with randomized receiver and source locations
within some limits.

A total of 39 rooms were simulated. Among these
simulations there were three room sizes from 80 to 300
cubic meters. In Figure 3, an example of simulated RIR
are presented, the simulation IR length was set to 1
second, in the graph the RIRs were cropped to the first
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Table 1. Room dimensions, volume and materials used for the simulations.

Room dimensions Room Volume Materials

Height = [2.7 - 3.0 m] 13 small size [80 - 150m3] Plasterboard on frame 100 mm cavity;
Width = [4.0 - 8.0 m] 13 medium size [150 - 220m3] Mineral wool in cavity, surface painted;
Length = [6.0 - 12.0 m] 13 large size [120 - 300m3] Double glazing, 2-3mm glass, 10mm air gap

Plywood, hardwood panels over 25mm airspace;
Wooden floor on joists;
Rubber floor tiles;
Carpet, thin, over thin felt on wood floor;

3000 samples to show the corresponding arrival time.
The RIRs at the NF microphone were convolved with
anechoic male and female monoaural recordings. Thus,
the convolved audio is the result from the simulation
representing the voice command that the loudspeaker
multichannel NF microphones are supposed to “record”
in each simulation case.

2.4 Loudspeaker Setup

For this study we have utilized four loudspeakers in a
multichannel configuration, two front Left and Right
loudspeakers to reproduce left, right and phantom cen-
ter signals. And one Rear Left and Rear Right loud-
speakers to reproduce left surround and right surround
signals from a 5.1 program material respectively. A
compact loudspeaker prototype was designed for the
purpose of this study. Four 11 × 11 × 11 cm sealed
boxes with a 51 mm full-range driver each, and a 0.6
L volume were built. A miniature MEMS microphone
was attached with a mechanical fixture in front of the
driver at approx. 2 cm from the diaphragm to record
the human voice as seen in Figure 4.

Fig. 4: Loudspeaker prototype with NF microphone.

2.5 Flow Processing

In this section the audio processing and data generation
are detailed.
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Fig. 5: Flow processing block diagram.

2.5.1 Data Generation

The data generation starts with the human voice in-
room simulation. The simulation consisted on creating
source and receiver setups where the location of each
loudspeaker/receiver is randomly placed within a lim-
ited sector of the room. The user/source was positioned
at the center of the room and from there each loudspeak-
er/receiver location was generated. The orientation of
the user was always facing the front wall at 0◦ as seen
in Figure 1.

A total of 1140 setups consisting of 570 × two gender
sets of RIRs data were computed, (see Table 1). For
each loudspeaker a base angle was used being the opti-
mal positioning angle according to the ITU-R BS.775-
1 standard [1], then a random value was added on a
range of +/- φ ◦. For the distance Dn from loudspeaker
to the user a random number between the range of
[Dmin,Dmax] was set as detailed in Figure 1. The dis-
tance from each loudspeaker to each NF microphone
is calculated from the driver’s coordinate to the NF mi-
crophone coordinate and save for each setup. On a real
loudspeaker setup these distances would be calculated
from the RIR measured with the NF microphones.
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For each loudspeaker location two coordinates were
generated, one for the driver and one for the NF mi-
crophone. Each setup includes four simulated RIRs by
gender. Then the RIRs are convolved with the anechoic
recordings. Next the audio is passed through a high-
pass filter at 100 Hz to remove unwanted low frequency
noise.

2.5.2 DI extraction

The DI is computed from the four anechoic recordings
convolved with the RIRs, using a 1/3 rd octave-band
filter. The values at f1 = 250 Hz, f2 = 500, f3 = 1 kHz,
f4 = 2 kHz, f5 = 4 kHz and f5 = 8 kHz frequency-bands
were obtained thus generating 4×6 DI matrix per gen-
der and per loudspeaker setup. In Figure 6 a polar
plot example of extracted DI from the simulated setup
shown in Figure 2 is shown.
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Fig. 6: Extracted DI from a simulated setup.

In Figure 7 the average 1/3 rd octave band energy ex-
ample extracted from the convolved audio with RIRs
simulated in setup of Figure 2 is shown. The DI is nor-
malized per frequency-bands over all channels. Each
frequency-band has a maximum of 0 dB DI.

2.5.3 NN Training

A supervised training was was carried out for the dis-
tance and angle models. The 4×6 DI matrix

DIL− f1
1 DIL− f2

2 ... DIL− f6
6

DIR− f1
7 DIR− f2

8 ... DIR− f6
12

DIRS− f1
13 DIRS− f2

14 ... DIL− f6
18

DILS− f1
19 DILS− f2

20 ... DIL− f6
24

 , (2)
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Fig. 7: Average 1/3 rd octave-band energy example ex-
tracted from the convolved audio with RIRs.

and the 4×4 loudspeaker distances matrix
dL→L

1 dL→R
2 dL→RS

3 dL→LS
4

dR→L
5 dR→R

6 dR→RS
7 dR→LS

8
dRS→L

9 dRS→R
10 dRS→RS

11 dRS→LS
12

dLS→L
9 dLS→R

10 dLS→RS
11 dLS→LS

12

 , (3)

were combined and reshaped into a one dimensional
array of size N = 40 which is used as the raw input data
for the NN model training. The prediction target is the
actual distance and incidence angle from loudspeaker
to user. The DI data was passed into a principal compo-
nent analysis (PCA) process to exclude redundant data
information [12]. The DI dB units data was converted
to linear amplitude values before entered into the PCA
block in order to facilitate the method. Then the 1140
data cases were split into 80% training, 10% test and
10% validation respectively. Two NN models were
trained, one for distance and one for angle prediction.
The distance prediction model contained an input layer
with M features, a hidden layer with 13 neurons and a
Tanh activation layer.

From there a second hidden layer with 95 neurons and
Tanh activation was connected before the output layer
that contained 4 neurons, see Figure 8. The follow-
ing parameters were used for the distance prediction
network:

• Max Epochs: 20,000 (Finished at 16054)

• Max fail: 5,000
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Fig. 8: NN training process block diagram.

Fig. 9: Training performance graph. Distance predic-
tion model.

• Optimizer: Scaled Conjugated Gradient (SCG)

– Goal: 0

– Minimum gradient: 1×10−6

– µ: 5×10−3

– σ : 5×10−5

– λ : 5×10−7

• Performance function: Sum of the square error

As observed in Figure 8, the angle prediction network
consisted of an input layer with M features, then 3 hid-
den layers were connected in cascade with 5, 42 and

Fig. 10: Training performance graph. Angle predic-
tion model.

88 neurons respectively. The three hidden layers con-
tained Tanh activation. Then the model was finalized
with an output layer with 4 neurons.

In Figure 9 the distance performance model graph is
shown. The same parameters used for the distance
prediction model were utilized for the angle prediction
network.

In Figure 10 the angle performance model is shown.
The training of the distance model had its best vali-
dation performance on epoch 11054, while the angle
prediction model had its best validation performance
on the epoch 2049.

AES 155th Convention, New York, USA, 2023 October 25–27
Page 6 of 8



Celestinos, Zhongran, and Chin Loudspeaker position estimation

[m]

[m
]

[m][m]

Loudspeaker-User L R RS LS

Distance Expected 1.7714 1.7335 1.8758 2.219

(m) Predicted 1.7703 1.7417 1.8807 2.2186

Mean error 0.0029

Angle Expected -21.047 11.8857 174.152 -152.64

(deg) Predicted -19.325 13.0779 175.632 -150.17

Mean error 1.7174°

Loudspeaker-User L R RS LS

Distance Expected 2.2111 1.8428 2.0993 2.7479

(m) Predicted 2.2147 1.8472 2.0974 2.7419

Mean error 4E-05

Angle Expected -43.529 1.7956 147.422 -129.67

(deg) Predicted -44.428 0.8276 145.978 -130.92

Mean error 1.1406°

Loudspeaker-User L R RS LS

Distance Expected 2.5435 2.6693 2.4102 1.5086

(m) Predicted 2.5461 2.6747 2.4132 1.5063

Mean error 0.0022

Angle Expected -21.6 55.8047 134.204 -166.53

(deg) Predicted -16.728 60.8042 137.061 -162.6

Mean error 4.1666°

[m
]

[m
]

Fig. 11: Results example of three loudspeaker layouts. Predicted, expected and mean error shown.
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Fig. 12: Distance prediction error.

3 Results

In this section the results of the study are presented.
The neural networks were evaluated with the 10% of
the data which was not used in the training. This is
to test how well the model is able to generalize. In
Figures 12 and 13, the 95% confidence interval and
mean prediction error for distance and angle are shown
respectively. An error of ± 1.7 cm, and ± 7◦ was
achieved for the distance and incidence angle from the
loudspeakers to the user. In Figure 11, an example of
results of three loudspeaker layouts is shown.

4 Discussion

Results shown a very good distance prediction, which
is crucial for spatial correction on an irregular loud-

Prediction error – Angle loudspeaker to user 
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Fig. 13: Angle prediction error.

speaker layout. As explained in Section 1, the first
possible spatial correction for a loudspeaker setup that
was not correctly located with respect to the user, is to
compensate with delays corresponding with the prop-
agation distance from the closest loudspeaker to the
further loudspeaker. If this parameter is well predicted,
a reasonable improvement in the spatial audio quality
can be obtained.

It would be desirable to obtain a better prediction angle,
but it seems that the typical human speech directivty
pattern due to the shape of the human head and the
position of the mouth does not allow to refine the learn-
ing process. The lack of precision on the prediction
angle can be also attributed to the limited amount of
microphones around the user.
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Future research will include the implementation of the
recording voice command on the actual NF prototype
and verification on a real case scenario. On these cases
human head physical differences, background noise
and other issues might play a significant role on the
prediction performance. Another subject of discussion
is that the receiver-room simulation is based on RIR,
assuming that the human speech is produced by a sound
source with linear time invariant properties. In reality
the human voice has different dynamic features that are
difficult to simulate. A topic not addressed in this study
is the influence of the room on the DI extraction, since
typically the DI is calculated in free field conditions,
this can be also another subject for research.

5 Summary

Several room simulations of human speech on typical
multichannel loudspeakers equipped with very near
field microphones have been carried out in order to
automatically estimate the loudspeaker position with
respect to the user in the room. The simulations in-
cluded the directivity sensitivity of the receivers due to
the position of the microphone in front of the driver of
the loudspeaker. The resulting 570×2 RIRs were con-
volved with male an female anechoic voice recording
commands. The DI was extracted from the four audio
processed channels. Machine learning in the form of
two NN was utilized to predict the distance and inci-
dence angle with respect to the user. Two FFNN were
trained with the processed data. Results shown on the
evaluation of the models a 95% confidence interval (CI)
of ±1.7 cm for loudspeaker to user distance and a CI
of ±7 degrees for the loudspeaker incidence angle.
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