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ABSTRACT

Time Series Forecasting (TSF) is used in astronomy, geology, weather forecasting, and finance to name a few.
Recent research [1] has shown that, combined with Machine Learning (ML) techniques, TSF can be applied
successfully for short-term predictions of music signals. We present here an application of this approach for
predicting audio level changes of music and appropriate Dynamic Range Compression (DRC). This ML-based
look ahead prediction of audio level allows to apply compression just-in-time, avoiding latency and attack/release
time constants, which are proper to traditional DRC and challenging to tune.

1 Introduction

Compressors are typically used to raise levels of quiet
sounds and attenuate loud ones [2]. They are com-
monly used in production and broadcast of audio con-
tent. Main applications are found in TV, radio, au-
tomotive to work around high background noise and
accommodate limited dynamic playback, in music pro-
duction to shape transients and increase the perceived
loudness. Commercial advertisements use DRC to blast
their message.

Traditional DRCs are generally misunderstood and
challenging to tune [3, 4]. Their parameters affect
the sound quality. For example, attack and release time
constants are often program dependent. Some common
problems found in state-of-art compressors are: latency

due to look-ahead delay and attack/release time con-
stants, tuning complexity (especially for multi-band
compressors), distortion, breathing, pumping, washed
out, no punch sound, stereo image shift. And specific
to multi-band compressors, they are: intermodulation
between frequency bands, changing timber and tonal
balance, resonances, phase shifting. . .

To alleviate the tuning complexity, current research
on DRC use ML techniques to automatically tune or
emulate traditional systems [5, 6, 7, 8, 9]. No research
has been done so far (to our knowledge)to rethink the
DRC design fundamentally. This paper presents a new
innovative approach. Our invention [Patent pending]
use Time Series Forecasting (TSF) to predict the levels
on an audio stream in real-time and compress/limit its
dynamic range. The TSF is based on ML techniques.
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Time Series Forecasting (TSF) is used in astronomy, ge-
ology, weather forecasting, and finance to name a few
[10, 11, 12, 13]. Recent research [1] has shown that,
combined with Machine Learning (ML) techniques,
TSF can be applied successfully for short-term predic-
tions of music signals. We present here an application
of this approach for predicting audio level changes
of music and performing appropriate DRC. This ML-
based look ahead prediction of audio level allows to
apply compression just-in-time, avoiding latency and
attack/release time constants, which are proper to tradi-
tional DRC and challenging to adjust appropriately.

In the following sections, we will first present the prin-
ciples of TSF with machine learning. Then we will
show how TSF can be used in music forecasting and
applied to DRC. We will present the outline of our ML-
DRC algorithm. Next we will describe the ML training
and tests, the performances metrics and compare differ-
ent networks architectures. We will compare ML-DRC
with traditional DRC, both in terms of objective results,
and subjective results with a listening test. We will fin-
ish by discussing the advantages and limitations of our
approach, propose future lines of work and conclude.

2 Principles

2.1 Time Series Forecasting (TSF)

Time series data is a sequence of observations or mea-
surements collected at successive points, where each
data point corresponds to a specific time period. The
order of the sequence is significant, as it holds informa-
tion about trends, seasonality, and patterns.

TSF is a specific application within time series analysis
that predicts future values based on previous observa-
tions. One conventional approach is Auto-regressive
Integrated Moving Average (ARIMA): ARIMA cap-
tures auto-correlation, differences, and moving aver-
age components to forecast future values. They are
effective for stationary time series data. Another ap-
proach is Exponential Smoothing: it captures trends
and seasonality. With the rise of big data and enhanced
computational power, ML has emerged as an essential
component of TSF models in recent years. Popular ML
approaches for TSF include Recurrent Neural Network
(RNN), Long Short-term Memory (LSTM), Gated Re-
current Units (GRUs), Attention-based Transformers,
etc ... [14, 15]

By utilizing past information, ML models can learn
the relationship between input characteristics and up-
coming values. The resulting model can forecast the
values at future time instances. Given a time series
x1,x2, ...xt , where xt is a vector of N input features
observed or measured at time t, the goal is to design
a model to predict ŷ(t+1) at a future time t +1 [14]. A
functional relationship learned by the ML models of
one-step ahead forecasting is as follows:

ŷ(t+1) = f (xt−k, ...,xt−1,yt−k...yt−1) (1)

where yt−k, ..yt−1 are the target values observed from
time t − k to t − 1; xt−k, ...xt−1 are the vector of ob-
served input features from time t− k to t−1; f is the
prediction function learned the models; k is the depth
of past time steps.

2.2 Dynamic Range Compression (DRC)

DRC is a signal processing technique used in audio and
music production to control the difference between the
loudest and quietest parts of an audio signal. It involves
reducing the dynamic range of an audio signal by at-
tenuating or compressing the amplitude of the signal’s
peaks, making the overall audio signal more balanced
and consistent in volume. This technique is commonly
applied to improve audio recordings’ perceived loud-
ness and clarity, ensuring that quieter sounds are still
audible without distorting or clipping the louder parts.

Here are the main parameters of a DRC compressor.
Threshold Setting: A threshold is a certain level be-
low which the signal is considered quiet or insignifi-
cant. When the audio signal surpasses this threshold,
dynamic range compression starts to take actions. Com-
pression Ratio: The compression ratio determines how
much the audio signal above the threshold will be re-
duced in amplitude. Attack Time: This parameter de-
termines how quickly the compressor responds once
the audio signal crosses the threshold. A shorter attack
time means the compressor reacts swiftly to changes
in volume. Release Time: Release time governs how
long it takes for the compressor to return to normal
operation after the input signal falls below the thresh-
old again. Knee: It defines the gradualness with which
compression is applied as the signal approaches the
threshold. A "soft knee" introduces compression gradu-
ally before the threshold is fully crossed, resulting in a
smoother transition. Make-up Gain: After compression,
the overall signal level might be reduced. Make-up gain
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Fig. 1: Traditional DRC

compensates for this reduction by amplifying the com-
pressed signal to achieve a desired output level. Delay:
A delay is often inserted in the direct path in digital
implementations to compensate for the attack time and
other lags in the side channel.

Knowing the incoming audio level allows the compres-
sor to anticipate changes in the audio signal before they
occur, helping to provide more accurate and refined
compression. It helps the compressor respond more
accurately to rapid changes in the audio signal. While
a look-ahead level prediction allows the compressor to
apply compression just in time, it avoids latency and
attack/release time constants tuning, which are proper
to traditional DRC and challenging to adjust appropri-
ately.

3 Design

Based on TSF principles, our algorithm uses look-
ahead level prediction to adjust the levels on an audio
stream in real-time and compress its dynamic range.
The level prediction uses ML techniques. The main
advantages of this approach are: no latency, simpler
tuning, and better sound quality. Notably, the attack
and release time constants are eliminated which are dif-
ficult to tune and impact the sound quality, eliminating
potential breathing, pumping effects.

A block diagram is shown in Fig. 2, giving an overview
of the full algorithm for streaming applications. The
pseudo-code is given in Algorithm 1.

Fig. 3 shows a typical example of compression law
where input levels are limited and low levels are raised.

4 Network Architectures & Training

4.1 Hyperparameters

For time-series forecasting, we considered single-step
time-series forecasting with a memory depth M of 5,

Fig. 2: Overview of ML-DRC

Algorithm 1 DRC algorithm with ML-based TSF

fs← sampling rate [Hz]
Leq duration [in s]: T ← 1
Frame size [in samples]: N← [T fs]
Initial net state: Lstate← vector of initial Leq’s
Initial gain (linear value): G← 1
while not end of input audio stream do

Read frame x from input stream

Calculate current Leq: L← 10log( 1
N

N

∑
n=1
|xn|2)

Apply gain to x: y← G x
Write frame y to output stream
Leq prediction and state update with Neural Net:
[Lnext ,Lstate]← Net(L,Lstate)
Apply compression law: Lr← f (Lnext)
Compute next gain (linear value):
G = 10(Lr−Lnext)/20

end while

Fig. 3: Example of Compression Law
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which means a neural network predicts the audio level
of one future time frame based on five preceding time
frames, including the current time frame. An input for
a neural network is an array of five sequential audio
level values, and the output is one audio level prediction
value. We have tested with M from 1 to 15, the preci-
sion increased as increasing M. However, in the range
of 5 to 15, the improvement in MAE (Mean Absolute
Error) loss was only different at the second decimal
point in the dB scale, which, therefore, is not worth
increasing computation.

The size of hidden nodes was set to 32 based on the in-
put memory depth to ensure that the network is capable
to represent our problem without over-fitting.

Each time frame is one second in length with no over-
lap, and the audio level value of each time frame is
the rms level of the audio signal for the correspond-
ing one-second window. We have also tested with
different time frame length T of 0.1, 0.2, 0.5, 1 and
2 seconds, and the training loss decreased as the time
frame length increased, which means better prediction
accuracy. However, it also means that the time series
of rms levels has become more predictable with less
time resolution because averaging with a longer time
length evens out the detailed changes in the audio level
dynamics. With less time resolution, we also lose the
resolution of the dynamic range control, which is the
ultimate goal of our Algorithm 1. We chose 1 second
as a trade-off between prediction accuracy and time
resolution since it preserves enough time resolution for
audio level fluctuations.

4.2 Training Setup

For neural network models, we conducted experiments
on FCN (Fully-Connected Network), LSTM (Long
Short-Term Memory), GRU (Gated Recurrent Units),
and Transformer Encoder. We then compared their per-
formances on the same training and test dataset. They
all have the same number of hidden state features, 32,
for the same input size, 5. The output size of FCN and
the Transformer Encoder was set to 1. While the LSTM
and GRU output an array of length 5, we only took the
last element of the array to predict the subsequent time
frame. We used MAE loss and Adam optimizer with
a learning rate of 0.0001 and a batch size of 1 with
random shuffling. During training process, we kept
the optimal performance for each neural network archi-
tecture when both the training set and test set hit the
minimum loss value for parallel comparison.

We chose MAE loss over MSE loss as MAE loss is less
sensitive to outliers in a dataset. During the training
with our training set, there were exceptionally signifi-
cant prediction errors, which are statistical outliers, and
occurred only in a handful of moments, for instance,
when there was a silent moment in the training data
audio. We tested both MSE and MAE loss, and the
training was more stable with MAE loss as MAE loss
was less sensitive, even if the outlier error occurred
over a silent period.

As shown in table. 1, we tested our neural networks
for both the linear scale dataset, in which audio level
values are between 0 and 1, and the dB scale dataset,
in which audio level values are below 0 dB and can go
down around -40 dB.

The baseline method for our experiments was simply
using the previous time frame’s audio level as the pre-
diction for the current time frame’s audio level. This
represents the real-time application of a traditional dy-
namic range compressor where processing on a current
time frame has to rely on the previous time frame’s
audio level. Otherwise, there should be latency longer
than one time frame to wait until receiving the current
time frame’s data.

Network Training set Test set
Baseline 1.19 2.26

FCN Linear 1.16 2.69
dB 1.13 2.05

LSTM Linear 1.14 1.87
dB 1.13 1.87

GRU Linear 1.13 1.88
dB 1.13 1.92

Transformer
Encoder

Linear 1.17 1.98
dB 1.18 2.00

Table 1: MAE error (dB) comparison for
different neural network models.

4.3 Training Results

Our training results for different neural network models
are shown in Table 1. LSTM, especially with the dB
scale, showed the best performance in the audio level
change prediction both for the training and test set.
However, the performance differences among different
neural network models were marginal. One exceptional
case was FCN with the linear scale, where the test set
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error was bigger than the baseline’s. Since the dB
scale is logarithmic, the same error in the linear scale
is not the same when converted into the dB scale. Even
if there is a small under-prediction error in the linear
scale, the error in the dB scale explodes or becomes
undefined if the prediction level value goes below 0
when the actual audio level is very low and close to 0
in the linear scale. For such cases, FCN with the linear
scale under-predicted several times, and it induced huge
errors in the dB scale. Otherwise, every neural network
model showed better performance than the baseline
both for the training and test set.

4.4 Prediction Error Analysis

Since we are interested in the dynamic range of the out-
put audio level for whether we get sufficient dynamic
range compression, we have to investigate not only the
prediction accuracy but also the prediction variance
for how the variance of prediction error can affect the
dynamic range compression.

Let us consider a compression law f (L), where L is
a raw audio level, f (L) is the compressed audio level,
and the compression ratio r is given as 1

r = ∂ f (L)
∂L . Due

to the prediction error δ of a neural network, we ap-
ply this compression law on the predicted audio level
L̂ = L+ δ , so the compression gain we get from our
algorithm [Algo. 1] is f (L̂)− L̂. However, we then
apply this compression gain on the raw audio level L,
which results in the final output audio level L̃ given as

L̃ = L+ f (L̂)− L̂ = f (L+δ )−δ

' f (L)+
(

∂ f
∂L

)
δ −δ = f (L)−

(
1− 1

r

)
δ ,

(2)

where the equality precisely holds when f is linear.

We are interested in the dynamic range of the output
audio level L̃, which can be quantified as the variance
Var(L̃) based on Eq.(2) as follows

Var(L̃) = (1/r)2Var(L)+(1−1/r)2Var(δ )
−2(1/r)(1−1/r)Cov(L,δ )

(3)

for f (L) ∼ L
r . Eq.(3) indicates the prediction error

δ brings an additional variance and covariance term
into Var(L̃), compared to the ground truth compression
result, Var( f (L)) = (1/r)2Var(L), which is a perfor-
mance loss in terms of dynamic range compression.
The weighting coefficient of Var(δ ) and Cov(L,δ ) are

Fig. 4: Test prediction- Classic orchestral music
(extract)

already on par with that of Var(L) for r = 2, and even
get more dominant as the compression ratio r increases.

Therefore, if the variance of a raw audio level is on par
with the variance of a neural network’s prediction error,
we do not get enough compression with our algorithm.1.
For instance, as shown in Table. 2, a pop music piece
typically has a narrow dynamic range and thus a small
Var(L), which is on par with Var(δ ) and Cov(L,δ ). In
such a case, we only get the actual compression ratio of
1.16 even though we have set the compression ratio r =
2 for our algorithm. In contrast, for a classical music
piece with a large dynamic range, in which Var(L) is
multiple times bigger than Var(δ ) and Cov(L,δ ), we
get the actual compression ratio of 1.62, much closer to
the compression ratio r = 2 we set. This demonstrates
that our algorithm.1 is more effective for the audio
material which has a large dynamic range.

5 Results & Discussion

LSTM gives the best results in term of forecasting
precision with an MAE of 1.87 dB (cf Table 1).
Fig. 4 shows an example of prediction results on test
material. Nonetheless the limited forecasting precision
restrict ML-DRC to the compression of large dynamic
range material (e.g. classical music). Pieces with a
small dynamic range, similar to the precision, hardly
get compressed (cf table 2).

Silent parts are an issue (cf fig. 5) and will need special
processing. Start of song exhibit issues as well and will
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Genre of
audio material

Var(L)
(raw) Var(δ ) Cov(L,δ ) Var(L̃)

(compressed)

Actual
compression
ratio

Pop 7.1 6.1 -4.0 5.3 1.16
Classical 33 8.3 -4.6 12.6 1.62

Table 2: Prediction error δ ’s effect on dynamic range compression.
(FCN trained in dB scale, Compression ratio r = 2)

Fig. 5: Test prediction- Classic orchestral music
(entire work- 3 movements)

Fig. 6: Example of compression obtained with
ML-DRC. Target: offline compression

Fig. 7: Level statistics on compressed music.
Target: offline compression

Fig. 8: Example of compression error obtained with
baseline method
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require some initialization process. We leave that for
future development.

Fig. 6 shows an example of compression achieved on
the extract of music shown in fig. 4.

For comparison purpose, the same piece of music has
been compressed using different methods: offline com-
pression, baseline, ML-DRC, and traditional DRC. Of-
fline compression yields perfect results and is denoted
target. For traditional DRC, we used a Matlab com-
pressor, part of the Audio ToolBox with the following
parameters:

• Threshold : -120 dB,

• Ratio : 2,

• KneeWidth : 0 dB,

• AttackTime : 50 ms,

• ReleaseTime : 200 ms,

• MakeUpGain : 49.7 dB.

The level statistics of the compression results along
with the original (uncompressed) are shown as box
plots in fig.7. We see that the interquartile range (box
height) fot the levels of the compressed files are all
close to the target. ML-DRC exhibits the biggest vari-
ability (whiskers) and the most negative outliers (red
crosses).

Baseline compression method is attractive because of
its efficiency and simplicity but it can create strong au-
dible errors. In some cases it creates high positive gains
that produces very loud frames (cf fig. 8). This happens
after a momentary silence in the music. This problem
didn’t happen with ML-DRC that tends on the contrary
to create negative outliers (too quiet frames) (cf fig.
7). In general,we have observed that ML-DRC tend to
produces less outliers than baseline method, because
forecasting is based on several past levels, instead of
only one. This tends to smooth the predicted values.

An attempt has been made to run blind listening tests
with experienced listeners without clear results. Subjec-
tive opinions on the different methods were collected
in an informal listening test involving seven partici-
pants. Four twelve-second extracts were used to com-
pare ML-DRC, Baseline DRC, traditional DRC (Mat-
lab function) with the following content: orchestral

music, horse riding scene with background music and
narration voice, in-car dialog, guitar tune. The com-
pression method was unknown from the participants
and the order of presentation was random. Assessors
generally found it difficult to discriminate between the
listening conditions, and were unable to elicit a prefer-
ence. The compressed files obtained with traditional
DRC, ML-DRC and even with baseline DRC could not
be distinguished.

From this first study, we can outline future directions of
work: design methods to manage start & stop of mate-
rial, and silent sections, improve forecasting precision
and robustness, ensure good generalization by training
of large data set. The principle of ML-DRC could be
extended to limiter applications by using short frame
duration (e.g. 1 ms) ...

6 Conclusion

Based on this study, we can conclude that DRC based
on TSF with ML techniques is a viable approach for
dynamic range compression of large dynamic range
material, which is the principal aim of DRC. In par-
ticular, blind listening tests have shown that the sound
quality of the compressed of material is on par with
traditional DRC. Some work needs to be pursued to
guarantee robustness, especially with processing of be-
ginning & end of pieces and silences, and generally
improve the precision. The simplicity of use, with no
tuning required, would be a plus for the sound engineer,
or even for the end user.
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