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ABSTRACT

In this paper, the Hartufo Python toolkit is presented. Its aim is to provide an easy way to manage and preprocess
HRTF data into a form that is suitable for use with all major machine learning tools. It consolidates typical
boilerplate code into a single reusable library, in the hope that setting up experiments spanning multiple HRTF
collections becomes easier, leading to novel insights. Additional benefits include increasing reproducibility and
lowering the barrier to entry for machine learning and/or HRTF novices. Available as an open-source public
beta, the majority of public HRTF collections are already supported, including auxiliary data such as photos and
anthropometric measurements in addition to the auditory data. An overview of the library’s functionality is given
in this text, ranging from practical examples for end-users to a discussion about the internal concepts of the library
for those who want to extend it or interleave it with existing code.

1 Introduction

As in many other audio processing domains, data-
driven machine learning techniques are increasingly
used in the study of Head-Related Transfer Functions
(HRTFs). Crucial for these techniques is the availability
of data, for training or validation. While there are a fair
number of HRTF collections publicly available, they
are very heterogeneous in terms of size, measurement
characteristics and auxiliary data such as correspond-
ing images and anthropometric information (see table 1
and [1]).

This heterogeneity requires collection-specific data pre-
processing in order to transform the available data
into a format that is suitable to be used with common
machine learning toolkits such as PyTorch [2], Ten-
sorflow [3] and Scikit-Learn [4]. As a consequence,

all too often only single collections are used in stud-
ies, whereas inter-collection comparisons become even
more important when using data-driven techniques due
to their additional challenges regarding interpretabil-
ity [5]. Furthermore, the necessity for formatting and
preprocessing pipelines leads to duplicated effort be-
tween researchers, complicates reproducibility [6] and
raises additional barriers to entry, equally for machine
learning practitioners who lack audio processing expe-
rience as for acousticians and DSP engineers who lack
machine learning expertise.

To address the points raised above, the Python library
Hartufo has been created. It provides a unified program-
ming interface to many HRTF collections, such that it
becomes trivial to switch between them and combine
them. Its design goals are to be (1) intuitive and con-
venient to use, (2) flexible and extensible to integrate
into existing workflows, (3) compatible with a wide
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range of machine learning libraries and (4) following
best practices.

The library is built on the standard scientific Python
software stack consisting of NumPy [19], SciPy [20]
and Matplotlib [21] and makes good use of the SOFA
standard [22] as unified storage format for HRTFs, but
extends this with a flexible processing pipeline to trans-
form and potentially unify multiple collections into
datasets that can be directly fed into all major machine
learning libraries.

The choice for Python as implementation language
is motivated by its popularity for machine learning.
While there is a small overlap when it comes to visuali-
sation and basic processing steps, the specific focus on
machine learning and HRTFs sets Hartufo apart from
more general Python libraries for spatial audio such as
pyfar1, spaudiopy2, Sound Field Analysis toolbox for
Python3 and safpy4.

Before we start, let’s go over some of the terminology
used in the remainder of this paper. An HRTF col-
lection includes all data collected and published as a
whole from a specific measurement setup. Collections
are unstructured and non-uniform. Dataset is used in
the strict machine-learning sense of the word, meaning
structured, selected and preprocessed data that is ready
to be used as input for a machine learning algorithm.
The goal of Hartufo therefore is to create datasets from
collections. Each dataset consists of multiple data-
points. Collections, and consequently datasets too, can
contain multiple types of data. Typically auditory data
are included, but also auxiliary data such as images, tab-
ular anthropometric measurements and 3D models can
be present. HRTF is used to refer to the set of all HRIRs
that are measured for a single individual. Therefore
its meaning is not strictly the frequency transforma-
tion of a HRIR. Most sections of the following text
concern auditory data regardless of its actual represen-
tation domain, so both HRTF and HRIR will be used
interchangeably there.

The data collections that are currently supported are
displayed in table 1. For now, the focus lies on collec-
tions that contain human subjects, though collections
of manikins only could easily be added in the future.

1https://pyfar.org/
2https://spaudiopy.readthedocs.io/en/latest/
3https://appliedacousticschalmers.github.io/sound_field_

analysis-py/
4https://github.com/leomccormack/Spatial_Audio_Framework

Fig. 1: A visualisation of the three principal planes
used, along with their names and the origin, ori-
entation and name of the angles in these planes.

2 Getting Started With Planar HRTF Data

2.1 Basic Data Access

At its most basic level, Hartufo can be used to access
all HRIRs that are measured in the same plane. In or-
der to unify access, independent of the 3D coordinate
system that is used to store a collection, the convention
displayed in fig. 1 is used. Three principal planes (hor-
izontal, median and frontal) are defined, together with
an origin, direction and name for the angle in each of
the planes.

Next, the side of the head for which measurements will
be retrieved needs to be decided. Any of the values
left, right, both, any, both-left, both-right, any-left, any-
right are possible. Selecting both returns left and right
measurements only when both are available, whereas
any returns all measurements regardless of the availabil-
ity of the other side5. Values of the form *-left return
both left and right side measurements, but the right ones
are mirrored to simulate additional left measurements,
with the inverse applied for *-right.

Finally, the representation domain of the HRTF needs
to be selected out of time, magnitude, magnitude_db,

5In practice, all currently supported collections always provide
both sides of the head for HRIRs, so there is no difference between
both and any. The same selection mechanism is also used for the
auxiliary data, however, where this is not the case. For instance, in
some cases only a picture of one side of the head is provided.
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Table 1: An overview of the data collections supported by Hartufo with the size and type of their constituting data.
An “M” indicates the number of manikins that are measured. The “P”, “H” and “T” in the “3D models”
column stand for “pinna”, “head” and “torso”, respectively, and indicate the type(s) of 3D model.

name # HRTFs 3D models 2D images anthropometry acquisition method

CIPIC [7] 43 (+2M) 45 (+1M) 43 (+2M) acoustic
Ircam Listen 51 49 acoustic
Ircam BiLi [8] 56 acoustic
Ircam CrossMod 24 acoustic
ARI [9] 224 60 acoustic
RIEC [10] 103 (+2M) 38 (+1M) PHT acoustic
ITA[11] 48 48 P 47 acoustic
Princeton 3D3A [12] 36 (+2M) 30 (+2M) P, PH, PHT 30 (+2M) acoustic & simulated
SADIE II [13] 18 (+2M) 18 PH 16 (+2M) acoustic
SCUT [14] 10 (+1M) 10 acoustic
HUTUBS [15] 94 (+2M) 56 (+2M) PH 91 (+2M) acoustic & simulated
CHEDAR [16] 1253 1253 PHT 1253 simulated
Widespread [17] 1005 1005 P simulated
SONICOM [18] 200 (+1M) 200 PHT acoustic

phase or complex. These choices can then be used
together with classes from hartufo.planar. Each
of the supported collections has a corresponding class
*Plane , e.g. CipicPlane for the CIPIC collection.
Passing a directory path together with the values dis-
cussed above and the option download=True ensures
that the collection gets downloaded to that directory
and loaded:
from hartufo.planar import CipicPlane
plane = 'median'
domain = 'magnitude_db'
side = 'both-left'
ds = CipicPlane('./cipic', plane,

domain, side, download=True)

There’s also an option verify=True, which can be
used to check the integrity of previously downloaded
files on disk. By default, neither of the two options is
run and an error is raised if the required files cannot
be found in the given directory. Finally, the option
plane_offset can be used to load HRIRs measured
in planes parallel to any of the principal planes6.

The type of the resulting variable ds is a subclass
of hartufo.HRTFDataset. Its size can be obtained

6This is particularly relevant for the ITA collection, where
no measurements in the exact horizontal plane are made, but
plane_offset=-0.72 loads the nearest plane.

with len(ds), where each datapoint corresponds to
the combination of a subject and a side of the head.
HRTFDataset classes support indexation to access in-
dividual datapoints, e.g. ds[0]. Each datapoint p is a
Python dictionary, from which the HRTF data is avail-
able under the key features. It takes the form of a 2D
array where each row corresponds to a single HRIR
in the requested domain. The number of rows there-
fore equals the number of measurement positions in the
plane.

Multiple datapoints can be accessed using the common
Python slicing syntax, e.g. ds[:5]. The dictionary
value of features is then a 3D array with the number
of datapoints as the first dimension. As an alterna-
tive to accessing the data of the full slice, i.e. all data-
points ds[:]['features'], the features property of
a dataset can be used: ds.features.

This minimal data access functionality is all you need
to start using the Hartufo classes, but there’s a lot more
functionality built-in.

2.2 Getting Dataset Info and Visualisation

Any planar dataset has a number of proper-
ties that provide information about the loaded
HRTF data. The samplerate of the HRIRs
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Fig. 2: Example of a plot visualising the HRTF mea-
surement positions in a plane with the default
options (concretely, the median plane of the
CIPIC collection).

and corresponding frequency bins of the HRTF
can be obtained as ds.hrir_samplerate and
ds.hrtf_frequencies. A list of the subject IDs
that correspond to each datapoint in a dataset can
be obtained with ds.subject_ids. The angles of
the measurement positions in the plane are retrieved
with ds.plane_angles. By default, the interval
for the angles is [−180,180) (horizontal and frontal
plane) or [−90,27) (median plane). Positive angles
in the range [0,360) can be requested by passing
positive_angles=True to the dataset constructor
or by setting the property of the same name after con-
struction. In all cases, the angle extrema are available
as ds.min_angle and ds.max_angle, and the name
of the plane angle as ds.plane_angle_name.

Using this additional info, you could cre-
ate your own visualisation, but plotting func-
tionality is also included. You can plot the
measurement positions in the plane with the
ds.plot_angles(ax=None, title=None)
method. By default, a new figure and a default title get
created, but you can pass your own Matplotlib Axes

instance or title string for more control. The created
or extended Axes also gets returned by the method

Fig. 3: Example of a plot showing HRTF data with de-
fault options (concretely the magnitude HRTF
for the left ear of subject 3 in the CIPIC collec-
tion, measured in the median plane).

for further customisation. An example of a default
measurement position plot is shown in fig. 2.

The HRIRs of a datapoint can be plotted by passing its
index i to ds.plot_plane(i). The default output
can be seen in fig. 3, but many options for customisation
are available. The ax and title options do the same
as in the previous plot, and Axes are returned again.
The visualisation automatically adapts to the selected
representation domain. A colourmap and its extreme
values can be specified with cmap, vmin and vmax,
respectively. In absence of given values, the extreme
values are set to the extrema in the dataset and the
viridis colourmap is used. The colour bar that is shown
by default can be disabled with colorbar=False.

The plane angles are plotted on a linear scale, so if the
sampling of angles is non-uniform, certain angles will
be drawn over larger areas in the plot than others. By
default, the area up to halfway the next angle is filled
with a uniform colour, resulting in a block-like appear-
ance that can be used to visually inspect the distribution
of angles in the plane. By passing continuous=True,
intermediate angle values will be interpolated leading
to a smooth picture. For frequency-domain HRTF rep-
resentations, the option log_freq=True can be used
to plot frequency on a logarithmic axis.
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2.3 Customising Dataset Contents

To make a selection of the subjects, a subject_ids
argument can be passed to the constructor, containing
a sequence of subject IDs. In its absence, a default set
is loaded, which generally corresponds to all human
subjects. If no subject with the given ID exists, it
gets silently skipped, but creating a completely empty
dataset raises an error.

For any dataset, regardless of its contents, you can
request the possible subject IDs you can pass to the
constructor as ds.available_subject_ids. This
makes the following workflow a convenient way to split
a dataset into parts. Start by creating an empty dataset
by passing an empty list or tuple to subject_ids,
then read ds.available_subject_ids to find out
what subjects are available and create another dataset
with a subset of these IDs.

If just a single example of a data collection is needed,
you can instead pass one of the strings first, last or ran-
dom to subject_ids. The first two deterministically
load the first, respectively last, ID in the collection,
whereas random loads a random subject.

Similarly, a plane_angles argument can also be
passed to the constructor to specify which measurement
positions, specified in degrees, should be loaded. By de-
fault, the HRIR values get stored in numpy.float32

format. It can be changed by passing a dtype argu-
ment to the constructor. When requesting an HRTF in
the complex domain, specifying a complex dtype such
as numpy.complex64 is required, otherwise an error
will be raised.

If only a few measurements per plane are re-
quested (or present in the collection), the ar-
gument lineplot=False can be passed to
ds.plot_plane() for a layered line-plot visu-
alisation as in fig. 4.

2.4 Preprocessing Planar Data

Some common preprocessing steps for HRIRs are avail-
able as further constructor arguments, for instance
to harmonise data from different collections as was
done in [1]. Passing a number to hrir_scaling will
multiply every HRIR with that number. HRIRs can
be resampled by setting hrir_samplerate (using a

Fig. 4: Example of a layered line-plot showing HRIR
data (concretely the HRIRs at angles −30°,0°
and 30° in the median plane for the left ear of
subject 3 in the CIPIC collection).

band-limited sinc interpolation implemented by lib-
samplerate7) and truncated to a maximum number of
samples (after resampling) with hrir_length. By de-
fault, no resampling nor truncation takes place. Finally,
hrir_min_phase accepts a boolean flag to indicate
whether the minimum phase HRIR should be computed,
which is not the case by default.

3 Creating Datasets for Supervised
Learning

3.1 Different Roles of Data in a Dataset

Simply loading auditory data on its own already enables
a multitude of data analysis and unsupervised learning
workflows, but the true power of Hartufo lies in its
capability to combine auxiliary data with auditory data
to create datasets for supervised learning. As such,
Hartufo is more of a dataset builder rather than just a
dataset loader.

In order to explain this functionality, we first need to
discuss the three different roles any type of data can
have in a supervised learning dataset. First, we have
the input data, known as the features, which we feed
into an algorithm that aims to learn how to predict
some output, known as the target. These two roles

7http://libsndfile.github.io/libsamplerate/
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are necessarily present in a supervised learning dataset.
A third, optional role is that of grouping information.
During the training process, a dataset typically get split
into parts, but this split is rarely completely random.
For instance, when splitting HRTF data, it is good
practice to ensure that measurements made on the same
subject (such as left and right ear HRIRs) are kept
in the same split, because these are not independent
datapoints. Otherwise an algorithm might learn to rely
on the presence of partial data of a subject in order to
predict some property, which is undesirable because
it does not scale to subjects that are not present in the
dataset.

Unless requested otherwise, planar auditory data is
loaded as features, through the default constructor argu-
ment hrir_role='features'. We’ve already seen
that this makes the auditory data available under the
feature key of the dictionary for a datapoint p. We
can also pass the string value target or group to the
hrir_role constructor argument. In that case, au-
ditory data can be accessed through p['target']

or p['group'], respectively. By default, the val-
ues associated to these dictionary keys are left empty.
Similar to the ds.features property, properties
ds.target and ds.group are available as alterna-
tives to ds[:]['target'] and ds[:]['group'].

3.2 Data Specifications

Having the flexibility to move auditory data to any of
three roles, auxiliary data can fill in the two remaining
roles. To describe what piece of info in a collection gets
what role assigned, we need to define specifications or
specs for each of the roles. These take the form of
nested dictionaries in which the first level can be any
combination of the keys below, listed together with
a description of the type of data that will be made
available for each datapoint.

collection a string identifier of the name of the data
collection

subject an integer giving the identifier of the subject
in the collection

side a string indicating the side of the head (left, right,
mirrored-left or mirrored-right)

hrirs an array containing the HRIRs in a certain do-
main for the given positions and side of the head

image an array containing the pixel values of an image
associated with a given side of the head

anthropometry an array containing anthropometric
measurements

3d-model an array containing a 3D model

The first four pieces of information are available for
every collection, whereas the availability of the latter
three depends on the collection, as shown in table 1.
The fourth key, hrirs, loads the same auditory data as
specified in the *Plane constructor. Therefore it is
superfluous in this context, but is mentioned for the use
of specs in later contexts.

The values for each of these keys in the specs are
Python dictionaries themselves, to allow passing op-
tional parameters for each type of data. The first three
keys collection, subject and side have no parameters,
therefore always receive an empty dictionary {} as
value.

3.3 Specifying Image and Anthropometric Data

Support for loading 3D models as auxiliary data
is planned, but not currently implemented. Asso-
ciated images and anthropometric data can already
be loaded, however, and have a number of options
that will be explained next. Both image and anthro-
pometry accept a side key in their parameter dictio-
nary (the second level of a nested spec dict), e.g.
{'image': {'side': 'any'}}. It can take the
same values as the side constructor argument intro-
duced in section 2.1. In absence of an explicitly defined
value, the same one as requested elsewhere will be used
and if no side is defined anywhere, it will default to any.
Note that these values are different from the ones that
are returned as part of a datapoint when side is part of a
spec: you can request both or any sides, but a datapoint
can only correspond to the (mirrored) left or right side
of the head.

Some collections (e.g. CIPIC) also accept a boolean
parameter rear for images, to indicate whether a rear
view of the requested side should be loaded. In any
case, the associated image gets loaded as a variable of
type PIL.Image.Image [23].

The anthropometric key accepts a select parameter,
which should be one or more of head-torso, pinna-size,
pinna-angle, weight, age or sex (with additional values
for some collections like ARI). This can be used to se-
lect specific subset of the available anthropometric data.
The entire set is used by default and the data for each
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from hartufo.planar import AriPlane, CipicPlane
ds1 = AriPlane('./ari', plane='horizontal', domain='magnitude_db', side='both',

subject_id='last', hrir_role='features', other_specs={
'target_spec': {'collection': {}},
'group_spec': {'subject': {}},

}
)
ds2 = CipicPlane('./cipic', plane='median', domain='time', side='left',

subject_id=(3,), hrir_role='target', plane_angles=(0, 30), hrir_min_phase=True,
other_specs={

'features_spec': {'image': {}, 'anthropometry': {'partial': True}},
'group_spec': {'subject': {}},

}
)

Listing 1: Two examples of datasets for supervised learning using planar HRTFs and auxiliary data.

datapoint is returned as a 1D array. The boolean par-
tial parameter influences what happens with datapoints
that only have partial anthropometric data. A value of
True sees the missing data replaced with numpy.nan,
False causes the datapoint to be dropped from the
dataset.

3.4 Example Supervised Learning Datasets

To combine the dictionary-formatted specifications
with the planar HRTF data, the specs for the remaining
roles (i.e. those not equal to the value of hrir_role)
need to be named either feature_spec, target_spec,
group_spec. These names are then to be used as keys in
a dictionary with the respective specs as values (thereby
creating a three-level nested dictionary) and passed to
the other_specs argument of an *Plane constructor.

An example should make this clearer. Variable ds1 in
listing 1 contains a dataset that has magnitude HRTFs
in the horizontal plane for both sides as features, ex-
pressed in decibels, and the name of the collection
(ARI) as target label. The subject index is returned
as group info such that both ears of the same subject
can end up in the same split. Variable ds2 contains a
dataset where the minimum-phase HRIRs of angles 0°
and 30° in the median plane are used as target to be
synthesised from left ear images and anthropometric
data, similar to what was done in [24] for instance. In
such cases where multiple keys are used in a spec, the
corresponding components are grouped into a tuple for
each datapoint.

4 Accessing the Full Sphere of HRTF
Measurement Positions

4.1 Internal Data Layout

One of the benefits of the *Plane interface is that it
does not require knowledge about the spatial distribu-
tion of measurements present in a collection (and its
natural coordinate system). Unfortunately, accessing
all measurements on a sphere, or an arbitrary selection
thereof, requires some knowledge about the collection
and the internal HRIR layout of Hartufo. Regardless of
the precise sampling scheme, we can define the funda-
mental plane used in a collection and its normal axis,
where the fundamental plane is the principal plane that
is taken as the reference plane for the measurements,
meaning that all spatial positions can be thought of as
lying on planes parallel to this reference.

In reality, the CIPIC collection is the only one known
that has the median plane as its fundamental plane,
all other collections use the horizontal plane. It is
most natural to express the latter as (azimuth, eleva-
tion) coordinates, whereas the former are most easily
expressed in (lateral, vertical) coordinates (following
the terminology in [26]), though conversions to other
coordinate systems can obviously be made. The spatial
distribution arises in practice from rotating subject or
loudspeakers around the normal axis [25].

HRIRs for a single datapoint are stored internally as a 3-
dimensional array, where the first two dimensions store
the spatial position and the third the sample values. The
rows are ordered by increasing angle in the fundamental
plane (vertical angles for CIPIC, azimuths for all other),
constrained to the interval [−180,180). The columns
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of the array are ordered by increasing angle in the
orthogonal plane, which is the plane defined by the
normal axis and the spatial position. The orthogonal
angles are constrained to the interval [−90,90] (lateral
angles for CIPIC, elevations for all the rest).

This internal layout means that the spherical positions
are stored as a plate carrée projection. All HRIRs in
the fundamental plane or in one of its parallel planes
are readily available in this representation, whereas the
other two principal planes and their parallel planes need
to be stitched together from two half-plane represen-
tations (which is what the *Plane classes do). The
first and last column are always the positions closest
to the poles, regardless of the collection, although the
measurements for the poles are not necessarily present
(in the collection or just in a particular selection).

If we think of the unique fundamental (in the rows)
and orthogonal angles (in the columns) as forming a
matrix of available positions, then this matrix is not
necessarily dense. Not every collection has chosen a
spatial sampling where every combination is measured.
Consequently, the 3D array of HRIRs is stored as a
NumPy masked array, where combinations that have
not been measured are masked.

4.2 Generalised Dataset API

Each of the supported collections also has a corre-
sponding HRTFDataset class in hartufo.full, e.g.
Cipic for the CIPIC collection. These are the gener-
alised versions of the corresponding *Plane classes
and provide more flexibility, but are slightly less con-
venient to use. Plane-specific properties and methods
introduced in section 2, such as ds.plane_angles,
ds.plane_angle_name, ds.plot_plane() and
ds.plot_angles(), are unavailable.

All HRIR-specific arguments have been removed from
the constructor too, which only takes features_spec,
target_spec, group_spec, subject_ids and
dtype as arguments. Instead of passing domain and
side to the constructor, they should be used as options
for the hrirs key of the relevant spec. The combination
of plane, plane_offset and plane_angles con-
structor arguments is replaced by the more flexible
fundamental_angles and orthogonal_angles

parameters, again to be passed to the hrirs spec. Both
parameters expect identically sized sequences of angles
in degrees, where spatial positions to be loaded are de-
fined by the coordinates obtained by pairing elements

of the same index in both lists. Either list can be None
too, in which case all available positions with the given
fundamental/orthogonal angle(s) will be returned. If
both values are None (or the parameters not defined in
the spec), all available positions will be loaded.

Finally, HRIR-specific processing can be requested by
passing more parameters to the hrirs spec. The param-
eter keys corresponding to the arguments in section 2.4
are scale_factor, samplerate, length and min_phase.
The example in listing 2 illustrates this whole process.
The variable ds3 contains the same underlying HRIR
data as ds2 in listing 1.

5 Further Processing of Data

Any of the loaded data can be further processed without
needing to modify any internal code. To that end, inspi-
ration was taken from Scikit-Learn’s Pipeline API [27].
Custom callables can be passed as value for the prepro-
cess or transform key in any spec. A callable is either
a simple function or a functor, a class that implements
the __call__() method. In either case, the callable
accepts a single argument, which is a single datapoint
corresponding to a spec key. So for a hrirs spec, this
is a (potentially masked) 3D array, for an image spec
a Pillow Image, for anthropometry a 1D array and a
string for other keys. The callable then returns the
modified data, which allows them to be chained.

A sequence of callables can be passed to the preprocess
and transform parameters of any spec. Both produce
the same result, the only difference is when the callable
gets executed. A callable passed to preprocess will be
run during the construction of the dataset. This means
it will be executed once and its output will be stored
as the values of the dataset. For instance, if you save
a dataset to disk, then load it again, it is the output of
the callable that is loaded, not the original data. On the
other hand, callables passed to transform are run every
time a datapoint is accessed, e.g. through indexing or
slicing. This means that the output of the callable is re-
turned but never stored, the original data gets preserved.
Therefore the latter is suitable for stochastic transforma-
tions, for instance random cropping of images, whereas
the former is strictly deterministic.

As an example, suppose that the decibel conversion of
the HRTF magnitudes was not built-in, then it could be
added by passing the function below:
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from hartufo.full import Cipic
ds3 = Cipic('./cipic', subject_id=(3,),

features_spec = {'image': {}, 'anthropometry': {'partial': True}},
target_spec = {'hrirs': {'domain': 'time', 'side': 'left', 'min_phase': True,

'fundamental_angles': (0, 30), 'orthogonal_angles': (0, 0)}},
group_spec = {'subject': {}},

)

Listing 2: Example usage of the generalised dataset API, which loads the same underlying data as the ds2 planar
dataset in listing 1.

Fig. 5: Visualisation of the default processing pipeline for HRIRs. The plane stitching operation is only present for
*Plane classes. The grey boxes indicate the location where custom callables can be inserted.

import numpy as np
def db_calc(hrtfs):

return 20*np.log10(hrtfs)

ds4 = ARI('./ari', features_spec={
'hrirs': {

'domain': 'magnitude',
'preprocess': db_calc,

}
})

All preprocessing operations defined in section 2.4
are internally implemented as a sequence of
callables, and are organised as shown in fig. 5.
The individual callables can be loaded from
hartufo.transforms.hrirs. Because the con-
structor arguments for planar datasets or corresponding
spec params for generalised datasets by default switch
all processing off, the external availability of processing
callables allows for a full reassembly of the process-
ing pipeline, rearranging their order and interleaving
custom operations.

The returned data does not necessarily need to have
the same shape as the input. For instance, this is what
happens in the plane stitching of the *Plane classes,
where 2D planes are returned. Internally, the plane

argument of the constructor is converted into a set of
fundamental and orthogonal angles, which get read
into 3D arrays and subsequently stitched together into
a single plane to form an output of two dimensions.
With such operations, however, one needs to be careful
to adjust the input of potential later callables in the
pipeline to the new dimensions.

6 Example Integrations

6.1 PyTorch

All instances of HRTFDataset have a class in-
terface that is directly compatible with PyTorch
Datasets. They can therefore be directly used
to create a torch.util.data.DataLoader.
However, because HRTFDataset returns dat-
apoints in a dict format (such that optional
grouping info can be passed), the provided
hartufo.pytorch.collate_dict_dataset

collation function is required when creating a
DataLoader to convert the dataset into expected
(feature, target) pairs:

from hrtfdata.torch import \
collate_dict_dataset

from torch.utils.data import DataLoader
loader = DataLoader(ds1,

collate_fn=collate_dict_dataset)
features, target = next(iter(loader))

Other torch.util.data functionality can be used
too, to chain or concatenate datasets, take subsets or
use custom samplers, for instance.

6.2 Scikit-Learn

Scikit-Learn expects all datapoints to be passed
together as inputs, for which the ds.features,
ds.target and ds.group properties are
suitable. It also requires 2D tabular data,
therefore a Flatten functor is available in
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from hartufo.full import Cipic
from hartufo.sklearn.estimators import Flatten, DomainConverter
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
ds = Cipic('./cipic', feature_spec={'domain': 'time', 'side': 'both-left'},

target_spec={'side': {}})
pipe = Pipeline([

('domain', None),
('flatten', Flatten()),
('reduce_dim', None),
('clf', LinearSVC()),

])
param_grid = {

'domain': [DomainConverter('time'), DomainConverter('magnitude')],
'reduce_dim': ['passthrough', PCA(n_components=None), PCA(n_components=3)],

}
exp = GridSearchCV(pipe, param_grid, scoring='accuracy').fit(ds.features, ds.target)
exp.cv_results_

Listing 3: Example Scikit-Learn cross-validation grid-search based on a pipeline mixing Hartufo and sklearn data
processing.

hartufo.sklearn.transforms, which takes
care of this and is compatible with Scikit-Learn’s
transformer API. All built-in data processing
callables are also available in a version that is
transformer-compatible, such that complicated
Scikit-Learn native pipelines can be set up, mixing
them with Scikit-Learn provided transformers such as
sklearn.decomposition.PCA.

The example in listing 3 illustrates how such a hy-
brid processing pipeline can be combined with a cross-
validated grid-search to easily examine which domain
is more suitable for predicting the side of the head from
HRIRs with a linear SVM, and whether PCA decompo-
sition of the features influences classification accuracy.
As can be expected for this contrived toy example, the
time domain is a far more suitable representation when
trying to predict at which side of the head the HRIRs
where measured (with 97% accuracy compared to 89%)
and PCA is detrimental for the accuracy when the num-
ber of retained components gets limited.

6.3 Additional Examples

More examples can be found as Jupyter Notebooks
in the code repository, including an example integra-
tion with Tensorflow. The code for the study in [1]
on the combination of multiple data collections, which
was performed using Hartufo, is also fully available.
Combining collections can be trivially done in practice

using native operations for each machine learning li-
brary, e.g. NumPy concatenation for Scikit-Learn and
torch.utils.data.ConcatDataset for PyTorch.
However, just because it is technically possible does
not mean that it is wise to do so without further har-
monisation. A complete discussion of potential pitfalls
can be found in [1].

7 Conclusion

The Hartufo toolkit has been presented in this paper,
from its basic functionality of loading planes of HRTF
measurements, over including auxiliary data to con-
struct datasets for supervised learning, to advanced
workflows mixing custom extensions with existing ma-
chine learning tools. Hopefully, the availability of this
new toolkit will lead to an increase in quantity and
quality of data-driven HRTF studies, since it removes a
practical barrier to combining multiple collections in
experiments. The library is available as a public beta
from the Python Package Index, so can be installed
with pip install [--user] hartufo. Its source
code is published under the MIT open-source licence
on GitHub8. Future efforts will be concentrated on in-
creasing the number of supported datasets, implement-
ing the proposed handling of 3D models and adding
more options for data preprocessing.

8https://github.com/jpauwels/hartufo
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