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The decomposition of sounds into sines, transients, and noise is a long-standing research
problem in audio processing. The current solutions for this three-way separation detect either
horizontal and vertical structures or anisotropy and orientations in the spectrogram to identify
the properties of each spectral bin and classify it as sinusoidal, transient, or noise. This paper
proposes an enhanced three-way decomposition method based on fuzzy logic, enabling soft
masking while preserving the perfect reconstruction property. The proposed method allows
each spectral bin to simultaneously belong to two classes, sine and noise or transient and noise.
Results of a subjective listening test against three other techniques are reported, showing
that the proposed decomposition yields a better or comparable quality. The main improvement
appears in transient separation, which enjoys little or no loss of energy or leakage from the other
components and performs well for test signals presenting strong transients. The audio quality of
the separation is shown to depend on the complexity of the input signal for all tested methods.
The proposed method helps improve the quality of various audio processing applications. A
successful implementation over a state-of-the-art time-scale modification method is reported
as an example.

0 INTRODUCTION

Decomposing an audio signal into its sinusoidal, tran-
sient, and noise (STN) components has been drawing re-
search interest for over two decades [1–4]. It is a widely
used tool in a variety of audio processing applications, rang-
ing from beat tracking [5] and tonality estimation [6] to re-
duction of spectral complexity in cochlear implants [7] and
to virtual bass enhancement [8]. The STN separation is also
helpful in time-scale modification (TSM) [1, 9, 10], where
it has been combined with the notion of fuzzy logic in order
to improve [4] or evaluate the audio quality [11]. In all these
audio applications, it is helpful to process sine, transient,
and noise components independently of each other. This
paper proposes improvements to the fuzzy STN decompo-
sition of audio signals.

The STN separation relies on the assumption that any au-
dio signal can be described as a linear combination of three
independent actors: tonal content (sines), impulsive events
(transients), and a residual part (noise) that does not be-
long to either one of the other two classes and adds nuance
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to the sound. Historically, additive synthesis modeled any
sound as a sum of sinusoidal components [12–14]. Serra
and Smith expanded the additive synthesis method by in-
troducing the noise class, which was obtained as a residual
after a sinusoidal model was subtracted from the original
signal [15]. In the resulting method—called spectral model-
ing synthesis [15]—the frequency, amplitude, and phase of
the sinusoidal components were estimated from the short-
time Fourier transform (STFT) using a method similar to
the McAulay–Quatieri algorithm [16].

The three-way decomposition was first introduced by
Verma et al. [1, 17, 18], who showed that including a third
component for transients was greatly beneficial in the con-
text of signal analysis and synthesis, as it avoided the smear-
ing of transients, which was a weakness in sines + noise
models. Levine and Smith also showed that the adaptiveness
of the STN model made it suitable for audio compression
and for pitch- and time-scale modification [19].

Fitzgerald discovered that it was possible to decompose
an audio signal into its sinusoidal and transient components
by using spectral masks extracted via horizontal and ver-
tical median filtering of the STFT [20]. Driedger et al. [2]
reintroduced the three-way separation by updating Fitzger-
ald’s method: the noise component could be obtained by
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retrieving spurious information after extracting the other
two components with median filtering.

Füg et al. [3] proposed a follow-up method involving
the use of structure tensors (ST) to find predominant ori-
entation angles and anisotropy in the time-frequency signal
representation, showing an improvement in the separation
quality for sounds with vibrato.

Other recent approaches for sines–transients separation
include a kernel additive matrix [21], non-negative matrix
factorization [22], improved sinusoidal modeling [23, 24],
and neural networks [25]. However, these methods do not
involve a third class for the noise component; hence, they
are not discussed further in this paper.

It should be noted that the STN decomposition does not
directly relate to traditional source separation, which usu-
ally aims at retrieving musical instruments in a sound mix-
ture [26] or speech from noisy background sources [27].
According to the STN formulation, even strongly percus-
sive sources, such as drums, will have a sinusoidal and noise
component—unless they are perfect, synthetic pulses—
and, similarly, strongly harmonical sources, such as the
violin, will hold, in addition to a sinusoidal part, a tran-
sient component in their attack and a noise component to
describe the nuances, such as the bowing noise.

Although both Driedger et al. [2] and Füg et al. [3]
applied hard binary masks to define the STN classes,
Damskägg and Välimäki [4] introduced the concept of
fuzzy logic in the context of TSM. The fuzzy classifica-
tion (FZ) allows spectral bins to simultaneously contribute
to the three classes, providing a more refined basis for
the three-way separation [4]. This decomposition method
was then extended to objective evaluation by Fierro and
Välimäki [11] and improved by Moliner et al. [8] to al-
low perfect reconstruction by ensuring that the three soft
spectral masks sum up to unity.

This work proposes a novel way to estimate fuzzy soft
masks for STN decomposition of audio signals. The pro-
posed method allows for intermediate classifications of the
spectral bins between two components—sines vs. noise and
transients vs. noise. This two-stage decomposition is shown
to improve the overall sound quality of the separated com-
ponents, particularly for transients. The masks ensure per-
fect reconstruction and are optimized for each class to have
a large constant region followed by a fast but smooth transi-
tion to the adjacent class. The transition slope is refined for
both decomposition stages to provide the best separation
quality.

The rest of this paper is structured as follows. SEC. 1
discusses previous three-way separation techniques. SEC.
2 introduces the new STN decomposition method, which
quasi-optimally extracts the sinusoidal and transient com-
ponents. SEC. 3 evaluates the proposed method against three
previous techniques. SEC. 4 applies the proposed method to
TSM, and SEC. 5 concludes.

1 RELATED WORK

This section summarizes three previous STN decompo-
sition methods based on a spectrogram representation of the

Fig. 1. Spectrogram of a test signal consisting of the castanets and
the violin playing simultaneously.

input signal. A spectrogram X is an M-by-K matrix repre-
senting the time-frequency behavior of audio signal x. Each
element X(m, k) is computed using the STFT [28, 15]:

X (m, k) =
L−1∑
n=0

x(n + m H ) w(n) e− jωk n, (1)

where n is the sample index, m = 0, 1, 2, ... M − 1 is the
temporal frame index, k = 0, 1, 2, ... K − 1 is the spectral bin
index, w is the analysis window, H is the hop size, L is the
window length in samples, which is assumed to be even,
j is the imaginary unit, and ωk is the normalized central
frequency of the kth spectral bin.

1.1 Harmonic–Percussive–Residual Separation
The Harmonic–Percussive–Residual (HPR) separation

[2] builds upon the Harmonic–Percussive (HP) method for
sines–transients decomposition [20]. Fitzgerald noted that
because sinusoids form flat lines in time direction in the
spectrogram and, vice versa, impulsive events appear as
flat lines in the frequency direction, they can be detected
(suppressed) using a median filter [20]. Fig. 1 shows the
spectrogram of a signal consisting of a mixture of violin
and castanets, whose time- and frequency-direction ridges
are noticeable. The spectrogram was produced using the
2,048-point Fast Fourier Transform (FFT) with a 2,048-
sample Hann window and a hop size of 1024, i.e. 50%
overlap. The sample rate of the test signal is 44.1 kHz.

Horizontal (time-oriented) and vertical (frequency-
oriented) median filtering can be applied to the spectrogram
X(m, k) to highlight the desired component and suppress the
other [20]:

Xh(m, k)

= med
[
|X (m − Lh

2
+ 1, k)|, ..., |X (m + Lh

2
, k)|

]
(2)

and

Xv(m, k)

= med
[
|X (m, k − Lv

2
+ 1)|, ..., |X (m, k + Lv

2
)|
]
, (3)
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where med[ · ] is the median function, and Xh and Xv are the
resulting horizontally and vertically enhanced magnitude
spectrograms, respectively. Parameters Lh and Lv are the
median filter lengths (in samples) in the time and frequency
directions, respectively.

Matrices Xh and Xv are then used to extract the tonal-
ness Rs and transientness Rt matrices with the following
elements [20]:

Rs(m, k) = Xh(m, k)

Xh(m, k) + Xv(m, k)
(4)

and

Rt(m, k) = 1 − Rs(m, k) = Xv(m, k)

Xh(m, k) + Xv(m, k)
, (5)

respectively. Fitzgerald [20] used Rs and Rt directly as spec-
tral masks, whereas Driedger et al. [2] later introduced a
controllable separation factor β and a third class (noise) to
describe those parts of the sound that are neither sines nor
transients.

From Eqs. (4) and (5), a set of hard spectral masks S
(sinusoidal), T (transient), and N (noise) can be derived as
follows [2]:

S(m, k) =
{

1, if Rs(m, k)/Rt(m, k) > β

0, otherwise,
(6)

T (m, k) =
{

1, if Rt(m, k)/Rs(m, k) > β

0, otherwise,
(7)

and

N (m, k) = 1 − S(m, k) − T (m, k). (8)

Their relationship for a chosen β is shown in Fig. 2. The
spectral masks are then imposed on X(m, k) to retrieve the
three desired spectral components:

Xs = S � X, X t = T � X, Xn = N � X, (9)

where � represents the Hadamard product, or element-wise
multiplication.

It has been observed that the quality of the HPR sep-
aration largely varies for the sinusoidal and the transient
components depending on the choice of the analysis win-
dow length L [29, 30, 2]. A large window length L for
the STFT, ensuring sufficient frequency resolution but poor

Fig. 2. Hard masks for transients, noise, and sines, as used in the
HPR method [2], for separation factor β = 2.5.

time resolution, results in a faultless extraction of sines but
a low-quality transient output; conversely, a smaller value
of L leads to a better extraction of the transient component
but a worse description of sines.

To overcome the time-frequency limitation, Driedger et
al. [2] divided the decomposition process into two cascaded
iterations [2]. In the first stage, a longer analysis window is
applied to extract the sinusoidal component [2]

xs = ISTFT [S1 � X ] , (10)

while transients and noise remain mixed together in the
residual

xres = ISTFT[(T1 + N1) � X ], (11)

where ISTFT is the Inverse STFT. Subsequently, the resid-
ual xres from the first stage is separated again with shorter
windowing, leading to the final decomposition [2]:

xt = ISTFT[T2 � X res], (12)

xn = ISTFT[(S2 + N2) � X res]. (13)

The noise signal xn will also contain residuals of sine
components, unless they were perfectly separated on the
first stage. Fig. 3 shows the separated STN components of
the example audio signal used here obtained with the HPR
method.

Fig. 3. STN separation performed over the mixture of castanets and violin, cf. Fig. 1, using the HPR method: (a) sines, (b) transients,
and (c) noise.
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Fig. 4. STN decomposition obtained using ST method, cf. Fig. 3: (a) sines, (b) transients, and (c) noise.

1.2 Sinusoidal, Transient, and Noise Separation
Based on Structure Tensor

Füg et al. [3] noted that sounds exhibiting vibrato, which
carry tonal information and are perceived as sines, do not
present strictly horizontal structures in the spectrogram.
This results in a leakage of energy in between different
spectral components. The strictness of the median filtering
can be overcome using an ST, a widely used tool in image
processing, to obtain a measure of the frequency change
rate and local anisotropies in the spectrogram, which will
then be used as features to define the spectral masks [3].

The ST matrix is obtained from the partial derivatives of
the spectrogram with respect to time and frequency, and the
orientation angles α and the anisotropy C of the spectral bins
are computed from the eigenvalues and the eigenvectors
of such a matrix, as described in [3]. The instantaneous
frequency change rate R is computed for each bin from the
orientation angles:

R(m, k) = fs
2

H M
tan [α(m, k)], (14)

where fs is the sample rate. The spectral masks are then
obtained as follows:

S(m, k) =
{

1, if |R(m, k)| ≤ rs ∧ C(m, k) > c
0, otherwise,

(15)

T (m, k) =
{

1, if |R(m, k)| ≥ rt ∧ C(m, k) > c
0, otherwise,

(16)

where c is the anisotropy threshold, and rs and rt are the
frequency rate thresholds for the sinusoidal and the transient
component, respectively. The noise mask is computed as
described in Eq. (8), and the spectral components are then
derived as in Eq. (9).

Fig. 4 shows the separated STN components of the exam-
ple audio signal using the ST method. Some differences can
be observed in comparison to the separation results of the
HPR method in Fig. 3, such as some holes in the transient
events at low and middle frequencies in Fig. 4(b).

1.3 Fuzzy Separation
Damskägg and Välimäki [4] introduced the concept of

fuzzy classification of the spectral bins, which corresponds
to a nonbinary classification using continuous values be-
tween 0 and 1. This method was later extended by Moliner

et al. [8] to ensure perfect reconstruction, i.e., all masks
summing up to unity. In [8], a third membership function
for noisiness Rn is derived from Eqs. (4) and (5):

Rn(m, k) = 1 −
√

|Rs(m, k) − Rt(m, k)|. (17)

The soft spectral masks are computed as

S(m, k) = Rs(m, k) − 1

2
Rn(m, k), (18)

T (m, k) = Rt(m, k) − 1

2
Rn(m, k), (19)

and

N (m, k) = 1 − S(m, k) − T (m, k) = Rn(m, k). (20)

Their relationship is shown in Fig. 5. The spectral masks
are once again imposed on X(m, k) to obtain the spectral
components using the Hadamard product, as in Eq. (9).

Fig. 6 shows the separated STN components of the ex-
ample signal using the fuzzy masks. The results are again
slightly different from those obtained with the two previous
techniques, presented in Figs. 3 and 4. One apparent fea-
ture is the leakage of energy from the other components to
the transient component at frequencies below about 5 kHz,
shown in Fig. 6(b).

Fig. 5. Transient, noise, and sinusoidal masks, as used in the FZ
method, which ensures perfect reconstruction [8].
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Fig. 6. STN decomposition obtained using the FZ method, cf. Figs. 3 and 4: (a) sines, (b) transients, and (c) noise.

2 PROPOSED METHOD

Fuzzy logic has proved useful in TSM, in which the
separation of the STN components using a soft mask leads
to the state-of-the-art performance [4]. However, the mask
for each component must be designed carefully to obtain the
best performance. For example, the FZ separation proposed
in [8] is suboptimal for this task because of the leakage
caused by the secondary lobes of the S and T masks and
the peaky behavior of the N mask, which can be seen in
Fig. 5. Ideally, a good fuzzy masking approach guarantees
perfect reconstruction, smooth transitions between classes,
and a well-defined dominant region per each class. In this
section, a novel method comprising an extension to the HPR
concept of clustered STN regions with soft masks resulting
from fuzzy classification is proposed to fulfill this target.

2.1 Prototype Soft Masking
A prototype function meeting all the aforementioned re-

quirements is the raised–cosine function, also known as the
Hann window:

w(n) = sin2(π n/L), 0 ≤ n < L . (21)

It is possible to take advantage of the symmetry of the
raised–cosine function, using only its one wing (appro-
priately shifted) to describe the different transitions. The
spectral masks for sines and transients can then be obtained
as follows:

S(m, k) =
{

sin2 [π(Rs(m, k) + 1
2 )], if Rs(m, k) ≥ 1

2
0, otherwise,

T (m, k) =
{

sin2 [π(Rs(m, k) − 1
2 )], if Rs(m, k) ≤ 1

2
0, otherwise

(22)

with N(m, k) being computed according to Eq. (8). Their
relationship is shown in Fig. 7. Although the masks defined
in Eq. (22) already provide an audible improvement over
the FZ masks, they are affected by a strong leakage of sines
and transients into the noise component, suggesting that
transitions between adjacent masks should be stricter.

2.2 Improving Noise Classification
Damskägg and Välimäki [4] suggested that the tonalness

distribution of pure noise, e.g. white or pink noise, can be

Fig. 7. Prototype soft masks for transients, noise, and sines, as
computed from Eq. (22).

Fig. 8. Normalized tonalness distribution for median-filtered white
noise with (a) long and (b) short analysis windows.

used to verify the shape of the noise mask N(m, k). In the
following, a description of the noise distribution over the
tonalness and, consequently, sines-to-noise and transients-
to-noise transitions is experimentally identified.

A set of 100 instances of random white noise were gen-
erated, and their tonalness was computed, independently,
with a long window (185 ms, or L = 8192 samples at 44.1
kHz) and a short window (11 ms or L = 512 samples).
Normalized histograms for tonalness values are shown, re-
spectively, in Figs. 8a and 8b. A visual inspection indicates
that the noise component remains relevant for a large range
of tonalness values around 0.5 before quickly decaying in
both directions. This suggests that mask transitions should
be much steeper than in FZ (cf. Fig. 5). The success of hard
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Fig. 9. Proposed enhanced transient, noise, and sines fuzzy masks
for STN decomposition, βU = 0.8, βL = 0.7.

masking of HPR also indicates that a single-classification
dominant region should be included in each mask.

It is also noted in Figs. 8a and 8b that the shape of the
tonalness distribution of noise is asymmetric for different
window lengths. The peak value is not centered at Rs =
0.5 but shifts towards one side or another depending on L.
The two wings of the distribution have different degrees of
steepness: a sharper “sinusoidal” (right) side and a more
relaxed “transient” (left) side can be identified for longer
L (Fig. 8a); the opposite behavior is exhibited for shorter
L (Fig. 8b). As for HPR, this could lead to a two–stage
decomposition featuring masks with different transition re-
gions.

2.3 Enhanced Soft Masking with Fuzzy Logic
Following the considerations discussed here, a new set of

masks can be derived by altering Eq. (22) to include dom-
inant and cutoff regions for each mask while retaining the
smoothness of the raised cosine function for the transition
region. Parameters βU and βL are introduced to control the
limits of the transition region and the bounds for, respec-
tively, the dominant (upper) region and the cutoff (lower)
region. The enhanced fuzzy masks are obtained as follows:

S(m, k) = f (Rs(m, k)) , T (m, k) = f (Rt(m, k)) (23)

where

f (a) =

⎧⎪⎪⎨
⎪⎪⎩

1, if a ≥ βU

sin2

(
π
2

a − βL

βU − βL

)
, if βL ≤ a < βU

0, otherwise

(24)

and N(m, k) is computed using Eq. (8). The relationship of
the proposed soft masks is shown in Fig. 9, when βU = 0.8
and βL = 0.7.

It has been shown earlier that, with hard masks, the two–
stage STN decomposition yields better results than a single-
stage separation [2, 30]. The same concept can be extended
to fuzzy masks. Following Eqs. (10) and (13), two sets are
obtained: {S1, T1, N1, βU, 1, βL, 1} for sines extraction with
a large L, and {S2, T2, N2, βU, 2, βL, 2} for the residual

Table 1. Transition area bounds for each decomposition stage
used in this study.

Stage Decomposition βU βL

1 Sines vs. Residual 0.8 0.7
2 Transients vs. Noise 0.85 0.75

transient and noise separation using a small L. The analysis
process is summarized in Fig. 10.

2.4 Choosing the Transition Area
In order to find suitable values for the βU and βL pa-

rameters of the two decomposition stages, an optimization
algorithm was run over the STN decomposition of a mix-
ture of synthetic sounds, each belonging almost perfectly to
a single class: a sum of sinusoids (for S), a short Gaussian
monopulse1 (for T), and a white noise sequence (for N).
As the original sources are known, the decomposition error
can be evaluated for each class. The goal is not to find a
single optimal pair of values for the interval, as it is known
that the quality of STN decomposition greatly varies with
different audio inputs [2, 4]. Instead, a range of tonalness
values for each bound yielding a small-enough decompo-
sition error can be identified; the following analysis was
conducted in order to find a pair of quasi-optimal values
that suits multiple audio inputs.

The genetic algorithm [31] was chosen for the optimiza-
tion process, which is divided in two stages. The first op-
timization run narrows down a set of paired bounds B1 =
{(βU, 1, βL, 1)i} over the S1 mask by minimizing the decom-
position error over the sinusoidal part. Following that, dif-
ferent optimizations can be run by fixing a single pair {βU, 1,
βL, 1} from B1 and finding its optimal pair {βU, 2, βL, 2}
over the T2 mask. Finally, an audible comparison over mul-
tiple separations using the obtained sets determines the final
quasi-optimal set B̄ = {(βU,1, βL,1), (βU,2, βL,2)}, which en-
sures that the decomposition quality remains similar for
different audio inputs. The results of this quasi-optimal
choosing process are reported in Table 1.

Fig. 11 shows the separated STN components of the
example audio signal using the proposed method with the
chosen set B̄. The separation results differ somewhat from
the previous separation examples. In particular, the tran-
sients in Fig. 11(b) are unbroken, and the pauses between
them are practically free from leakage from the other com-
ponents, as desired.

3 EVALUATION

The audio quality of STN decomposition is typically de-
graded by intercomponent leakage, loss of tonality, loss of
presence, or other artifacts, e.g., musical noise [32]. In pre-
vious works, the separation quality was evaluated by means
of audio blind source separation performance assessment
metrics, such as Signal-to-Distortion Ratio (SDR), Signal-
to-Interference Ratio (SIR), and Signal-to-Artifacts Ratio

1xGP(t) = √
e2π fcte−2(π fct)2

, where fc is the center frequency.
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Fig. 10. Block diagram of the proposed two-stage STN decomposition method.

(SAR) [2, 3, 33]. However, those metrics require a mix-
ture of three independent sources, one per class, that is
subsequently decomposed again for the separation quality
assessment. This prevents nonsynthetic audio inputs, e.g.,
music or speech, from being tested: unless dealing with per-
fectly tonal, impulsive, or noisy sources, the input sounds
themselves are composed of a mixture of unknown STN
parts.

Informal subjective listening tests on STN separation
have previously been conducted by asking the participants
whether the sinusoidal and transient components extracted
by the method under test met the expectation of representing
the sines and transients of the audio reference [2]. The STN
decomposition algorithm proposed in this work is evaluated
against other techniques by extending the same idea to a
formal blind listening test, involving experienced listeners
as participants and asking them to rate the quality of the
sines and transients extraction for different STN methods.

3.1 Listening Test Design
A formal blind listening test was conducted on a selection

of 19 experienced listeners, 17 of which reported previous
experience in test design. No participant reported any hear-
ing impairments or relevant medical conditions. The test
software was run on a machine running MacOS 10.14.6,
using a single pair of Sennheiser HD 650 headphones, in-
side a soundproof listening booth at the Aalto Acoustics
Lab, Espoo, Finland.

A set of nine audio samples of short duration (4 to 6 s)
was selected, consisting of two synthetic sounds and seven

Table 2. Audio samples used in the listening test.

Name Description

Synth Synthetic mix of tones, pulses, and white noise
CastViol Solo violin and castanets, from [34]
ICanSee Excerpt from I Can See Clearly, by Holly Cole Trio
Eddie Excerpt from Early in the Morning, by E. Rabbit
Jazz Mix of trumpet, piano, bass, and drums, from [34]
Vocals Excerpt from Tom’s Diner, by Suzanne Vega
Vibrato Synthetic mix of vibrato, pulses, and pink noise
Billie Intro of Billie Jean, by Michael Jackson
Drum Solo performed on a drum set, from [34]

musical excerpts from various genres, featuring different
spectral contents. The test samples are listed in Table 2.

In each trial of the test, subjects were presented with one
of the audio excerpts, referred to as reference, and were
asked to blindly rate the quality of the extraction of the
sound component under test (sines or transients, respec-
tively) from such a reference, for four different STN de-
composition methods: HPR, ST, FZ, and the proposed one
(PROP). The following settings were used: the sample rate
was 44.1 kHz, and the window and FFT lengths were L1 =
8,192 samples for the first round and L2 = 512 samples for
the second round, with 75% overlap and Hann windowing.
The length of the median filters was 500 Hz (93 bins in the
first round and 6 in the second) in the frequency direction
and 200 ms (4 bins in the first round and 69 in the second)
in the time direction.

The original reference was also included among the sam-
ples under test, to provide a lower bound. Subjects were

Fig. 11. STN decomposition of the castanets and violin using the proposed method, cf. Figs. 3, 4, and 6: (a) sines, (b) transients, and (c)
noise.
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asked to rate each sample on a scale from 0 to 100, with
the specific request of assigning 0 to the sample identified
as the reference. As there was no ground truth separation
for any of the synthetic sounds, it is anticipated that none
of the samples was perceived to be an ideal decomposition:
hence, there was no obligation to rate any of the samples as
100 (full scale).

The test was divided in two parts consisting of nine trials
each, the first focusing on sines extraction and the second
on transients extraction, for a total of 18 trials and 90 au-
dio samples under investigation. Listeners were allowed a
short training session before starting the actual test to get
acquainted with the interface, the keyboard shortcuts, and
the task itself. The results of the training session were not
included in the statistical analysis. Prior to the test, famil-
iarity of the subjects with the concepts of sound separation
and sines, transients, and noise was asserted. The experi-
ment was conducted over WebMushra [35], although the
designed test did not follow the MUSHRA recommenda-
tion. The processed audio excerpts and the test software are
available at the companion webpage [36].

3.2 Results
Mean Opinion Scores (MOS) were computed from the

ratings given by the subjects to estimate the quality of the
decomposition methods under test. Boxplots displaying the
distribution of the data for the sines and transients extrac-
tion are shown, respectively, in Figs. 12(a) and 12(b). Data
distribution can also be observed via histograms, available
at the companion webpage [36].

Overall, the proposed method consistently performed
better than or as well as HPR for every audio excerpt for
both sinusoidal and transient decompositions. The proposed
methods achieved a median MOS score between 3.0 and 5.0
(“good” to “excellent”) in all but one test case; see Figs.
12(a) and 12(b). The HPR method was below 3.0 in two
cases. The ST method generally scored intermediate values,
with the exception of Vibrato, in which ST outperformed
the other separation methods: this was expected, consid-
ering that ST was designed purposely for sound mixtures
presenting vibrato. FZ was the lowest-ranked algorithm
with a significant difference in the subjective ratings from
the other three methods, as appears from Figs. 12(a) and
12(b).

Considering the sines extraction only, the proposed
method performed quite similarly to HPR in Fig. 12(a) and
significantly better only for the Vocals and Drum excerpts,
in which the fuzzy soft masking helped in the preservation
of the tonality variations. However, the median value for
the proposed method was consistently higher than that of
the HPR method.

A larger improvement was observed in the transient de-
composition in Fig. 12(b). Considering the median of the
distributions, the proposed method surpassed HPR for all
excerpts but Icansee and Jazz. ST proved to be a compet-
itive algorithm for Vocals. The large amount of variance
in the data came from the absence of a proper separation
“reference,” i.e., an upper limit for the subjective grading in

each trial. The subjects had to apply their own scale during
the grading process, which consequently lead to data that
are distributed in a non-Gaussian fashion. This was also
confirmed by an inspection of data skewness and kurtosis,
which is reported in the companion website [36].

Further analysis was conducted on the results to assess
statistical significance in the data distribution, i.e., the dif-
ference between the distribution of data for different meth-
ods had statistical significance. In this case, the observation
of non-Gaussian distributions called for a nonparametric
paired difference test. The Wilcoxon signed-rank test was
chosen for the task. For a 95% confidence interval, statis-
tical significance was achieved if the signed-rank test re-
turned a p value below the threshold α = 0.05. Thresholded
resulting p values for sinusoidal and transient separation
data are shown, respectively, in Figs. 13 and 14.

The results showed that statistical significance for the
difference in data distribution from the proposed and the
competitive methods was achieved for at least one of the two
components (sinusoidal or transient separation) for seven
excerpts out of nine, with the transient separation being the
discriminant factor in six cases out of seven. Icansee and
Jazz were the two most complex mixtures among the col-
lected audio samples: this suggested that the more complex
the sound mixture was, the harder it became to discriminate
the separation performance. The traditional statistical anal-
ysis via ANOVA and paired t test, carrying similar results,
is reported in the companion website [36].

4 APPLICATION TO TIME STRETCHING

The proposed method is adapted to audio TSM, which
is a suitable application for the STN decompositions [4,
11, 34]. For this purpose, the fuzzy phase vocoder (FPV)
developed by Damskägg and Välimäki [4], which received
the highest average score in a recent comparison of audio
time-stretching methods [37], is modified to include the
proposed decomposition method. The refined separation al-
lows for the transients to be preserved and repositioned onto
the stretched time axis [38], while the sinusoidal and noise
components are processed via the phase vocoder with iden-
tity phase locking and phase randomization, respectively.

The enhanced TSM processing for a section of the
CastViol excerpt that has been slowed down to half speed
is shown in Fig. 15. The sound processed with the original
FPV visibly suffers from transients smearing, a recurring
phenomenon in phase-vocoder-based TSM [39], With the
STN-enhanced version, the transients appear much sharper
and better resemble the ones visible in the original signal.

4.1 Comparison
A preference test was conducted to compare the original

FPV [4] with the proposed STN-modified one (PROP), in
order to evaluate the enhancement brought by STN decom-
position to a suitable method. Eleven experienced listeners
participated in the test, which was realized on the same
hardware and with similar modalities as the one described
in SEC. 3.1. Subjects were asked to listen to a reference
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Fig. 12. MOS and confidence intervals for (a) sines and (b) transients separation of nine audio samples, showing that the proposed
method is the winner or among the best methods in almost all cases.

Fig. 13. Thresholded p values resulting from the Wilcoxon signed-rank test over sinusoidal separation data. Statistical significance (p ≤
α, α = 0.05) is highlighted by coloring the cell. (a) Synth, (b) CastViol, (c) Icansee, (d) Jazz, (e) Eddie, (f) Billie, (g) Drum, (h) Vibrato,
and (i) Vocals.
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Fig. 14. Thresholded p values of transient separation data, cf. Fig. 13. Statistical significance (p ≤ α, α = 0.05) is highlighted by coloring
the cell. (a) Synth, (b) CastViol, (c) Icansee, (d) Jazz, (e) Eddie, (f) Billie, (g) Drum, (h) Vibrato, and (i) Vocals.

Fig. 15. Comparison between (a) a section of CastViol and its mod-
ifications via (b) fuzzy phase vocoder (FPV) [4] and (c) its STN
enhancement (PROP), for a TSM factor of 2. Note the different
time scales in the subfigures.

Fig. 16. Subject preferences between original FPV [4] and the
STN modification (PROP), for TSM factors (a) 1.5 and (b) 2.

sound and to select their preferred time-stretched version in
terms of sound quality from two options, processed respec-
tively with FPV and PROP. Four audio excerpts (CastViol,
Billie, and Icansee from the previous test, plus a Guitar
plucking sound) were time-stretched with factors 1.5 and
2. Loudness normalization was applied to compensate for
the nonperfect reconstruction of FPV. Results are visual-
ized in Fig. 16, and all test sounds are available on the
companion webpage [36].

Test subjects showed a strong preference for PROP over
all samples for both time-stretching factors, as can be seen
in Figs. 16(a) and (b). A minority expressed a preference for
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FPV for Icansee, mentioning that although the transients’
“punch” was well retained by the other method (PROP), it
created a dissonance with the noisy part of the transient,
which goes through the phase vocoder and phase random-
ization and is heavily smeared. A different processing for
the noise component, which can now be isolated through
the STN decomposition, could further improve the audio
time-stretching performance.

5 CONCLUSION

In this paper, the three-way sound decomposition into
sines, transients, and noise using fuzzy logic was enhanced.
A set of soft spectral masks was derived to fulfill the task
while preserving the perfect reconstruction property. Us-
ing such soft masks, the novel two-stage STN decom-
position method proposed in this paper allows a single
spectral bin to be simultaneously classified either as sine
and noise, or as transient and noise. Soft masking posi-
tively affects the decomposition by attenuating or remov-
ing common artifacts, e.g., musical noise or loss of transient
presence.

The results of a subjective listening test against three
other methods showed that the proposed decomposition
method typically improves the separation quality in terms
of transient extraction, with a comparable performance
for sines extraction with the previous best method. It
was also shown how the complexity of the audio sig-
nal affects the quality of the decomposition. For instance,
the proposed separation method struggles when the si-
nusoidal part contains vibrato, as does the competing
previous method.

The proposed method can help improve sound quality
in many audio processing tasks. A successful application
to audio time stretching was shown to improve the perfor-
mance of the state-of-the-art algorithm.
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System With Fuzzy Separation of Tones and Transients,”
in Proceedings of the 23rd International Conference on
Digital Audio Effects (DAFx), pp. 86–93 (Vienna, Austria)
(2020 Sep.).

[9] F. X. Nsabimana and U. Zölzer, “Audio Sig-
nal Decomposition for Pitch and Time Scaling,” in
Proceedings of the 3rd International Symposium on
Communications, Control and Signal Processing (IS-
CCSP), pp. 1285–1290 (St. Julians, Malta) (2008 Mar.).
https://doi.org/10.1109/ISCCSP.2008.4537424.

[10] J. Driedger, M. Müller, and S. Ewert, “Im-
proving Time-Scale Modification of Music Signals Us-
ing Harmonic-Percussive Separation,” IEEE Signal Pro-
cess. Letters, vol. 21, no. 1, pp. 105–109 (2013 Jan.).
https://doi.org/10.1109/LSP.2013.2294023.
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Fuzzy Decomposition of Sound into Sines,
Transients and Noise: Companion Web Page,”
http://research.spa.aalto.fi/publications/papers/jaes-stn
(accessed Oct. 19, 2022).

[37] T. Roberts, A. Nicolson, and K. K. Pali-
wal, “Deep Learning-Based Single-Ended Quality Pre-
diction for Time-Scale Modified Audio,” J. Audio
Eng. Soc., vol. 69, no. 9, pp. 644–655 (2021 Sep.).
https://doi.org/10.17743/jaes.2021.0031.

J. Audio Eng. Soc., Vol. 71, No. 7/8, 2023 July/August 479

https://doi.org/10.1109/PROC.1977.10660
https://doi.org/10.2307/3680788
https://doi.org/10.1109/TASSP.1986.1164910
https://doi.org/10.1109/ICASSP.1998.679647
https://doi.org/10.1049/cp.2014.0655
https://doi.org/10.1109/IWAENC.2018.8521371
https://doi.org/10.1109/TASLP.2018.2825440
https://doi.org/10.1109/TASLP.2013.2287052
https://doi.org/10.1109/TSA.2005.858005
http://doi.org/10.5334/jors.187
http://research.spa.aalto.fi/publications/papers/jaes-stn
https://doi.org/10.17743/jaes.2021.0031


FIERRO AND VÄLIMÄKI PAPERS
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