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Speech enhancement (SE) systems typically operate on monaural input and are used for
applications including voice communications and capture cleanup for user-generated content.
Recent advancements and changes in the devices used for these applications are likely to
lead to an increase in the amount of two-channel content for the same applications. However,
SE systems are typically designed for monaural input; stereo results produced using trivial
methods such as channel-independent or mid-side processing may be unsatisfactory, including
substantial speech distortions. To address this, the authors propose a system that creates a novel
representation of stereo signals called custom mid-side signals (CMSS). CMSS allow benefits
of mid-side signals for center-panned speech to be extended to a much larger class of input
signals. This, in turn, allows any existing monaural SE system to operate as an efficient stereo
system by processing the custom mid signal. This paper describes how the parameters needed
for CMSS can be efficiently estimated by a component of the spatio-level–filtering source
separation system. Subjective listening using state-of-the-art deep learning–based SE systems
on stereo content with various speech mixing styles shows that CMSS processing leads to
improved speech quality at approximately half the cost of channel-independent processing.

0 INTRODUCTION

Speech enhancement (SE) is a technology that aims
to reduce or eliminate background noise while preserv-
ing speech quality, typically for monaural audio signals in
applications including voice communications and capture
clean-up. State-of-the-art deep learning–based SE systems
include FullSubnet [1], Dual-Path Convolution Recurrent
Network (DPCRN) [2], and NSNet2 [3], which is the of-
ficial baseline for the Deep Noise Suppression challenge
[4]. These technologies are relatively mature for monaural
input but are not designed for stereo (or higher channel
count) inputs; pilot testing of these systems, using channel-
independent processing of stereo signals with various styles
of speech mixing, found that they tend to produce unsatis-
factory outputs with significant noise leakage and speech
distortion. For channel-independent processing, the SE sys-
tems are likely to exhibit unequal strain vs. time and fre-
quency in each channel, and the unequal imperfections may
be perceived as additional distortions.

Due to recent trends in hardware and operating systems,
there is likely to be a large increase in the amount of stereo
data available for SE applications. One major consumer
electronics company recently updated their operating sys-
tem to allow access to both mics on their mobile phones

and tablets [5]; the company has over 1.8 billion active de-
vices [6]. An operating system provider has facilitated the
inclusion of microphone arrays (including two-mic arrays)
on laptops for several years [7]; it is possible they will also
facilitate accessing array signals directly. Other advance-
ments include binaural microphones on headphones (e.g.,
[8, 9]) and an increase in the availability of affordable pe-
ripheral stereo microphones.

This likely increase in the availability of stereo inputs to
SE systems that are not designed for such inputs presents an
opportunity for improvement. This paper presents a system
that allows an existing monaural SE system to process a new
type of signal based on a spatially dynamic version of mid-
side signals. To develop an understanding of the new signal,
the authors will describe the special relationship between
center-panned speech target sources and standard mid-side
signals, namely that the mid signal boosts the target source
relative to other signals, whereas the side signal suppresses
it.

The authors will then describe how this concept may be
generalized to target sources that are not center-panned,
whose mixing may be estimated using a technique de-
scribed in [10]. This allows creation of custom mid-side
signals (CMSS) that allow arbitrarily mixed speech to re-
ceive the same benefit as center-panned speech in standard
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mid-side signals. An SE system may process the custom
mid signal (CMS), instead of processing standard mid, side,
or channel signals.

Using a subjective listening test, the authors demonstrate
that for state-of-the-art deep-learning based SE systems,
this approach allows for significantly improved speech out-
put quality at approximately half the processing cost of
channel-independent processing.

This paper is organized as follows. Sec. 1 reviews mid-
side signals and describes how they can be generalized
and customized using detectable mixing parameters to cre-
ate CMSS. Sec. 2 describes how to use CMSS for effi-
cient, high-quality processing of stereo input by a monau-
ral SE system. Sec. 3 presents results from a subjective
listening test of SE systems, which compares the perceived
qualities of the proposed method with those of a channel-
independent baseline. Sec. 4 concludes the paper with a
summary and discussion of future work.

1 MID-SIDE SIGNALS

This section describes how CMSS are created and mo-
tivate their use. To do so, the first subsection begins by
reviewing standard mid-side signals and notes their spe-
cial relationship with center-panned sources. The second
subsection will describe a more general target source mix-
ing model, which uses additional parameters �1 and �1 to
describe mixing of sources that are not necessarily center-
panned. The third subsection describes how to create gen-
eralized mid-side signals that provide mid-side benefits to
sources that are mixed using the more general model. The
fourth subsection describes how the concept of generalized
mid-side signals may be effectively implemented for real-
world signals by dynamically estimating �1 and �1 over
time and frequency using a technique in [10]. The resulting
signals are termed CMSS.

1.1 Standard Mid-Side
The authors presently summarize the standard mid-side

signal decomposition (see, e.g., [11]). Mid-side microphone
capture is not presently described, although the authors
note that a mid-side signal decomposition of stereo signals
may approximately recover the components signals in a
mid-side recording; see, e.g., [12]. The standard mid-side
decomposition of a stereo signal is as follows:

M = 0.5 (L + R)
S = 0.5 (L − R)

, (1)

where M is the mid signal, S is the side signal, L is the left
channel signal, and R is the right channel signal. Because
the operations used here are linear, this calculation may
occur in the time domain or a time-frequency domain such
as the short-time Fourier transform (STFT) domain. Below,
the authors will work in the STFT domain. The original
stereo channels may be recovered via

L = M + S
R = M − S.

(2)

For inputs that contain a center-panned target signal of
interest, the mid signal will contain the target signal (and
likely, other sounds), whereas the side signal will be de-
void of the target signal but will contain other non–center-
panned sounds, depending on how they are mixed to the
two channels. (See, e.g., sec. 4.4 of [13].) For stereo signals
with a center-panned target signal, the mid-side representa-
tion may be thought of as providing mild source separation
or source boosting. The mid signal will increase the rel-
ative level of center-panned in-phase signal components
(and of components that are approximately so) while at-
tenuating others; the side signal will completely attenuate
center-panned signal components and will boost out-of-
phase components.

This special relationship between a center-panned tar-
get source and the mid-side signals can be beneficial to a
processing system that seeks to enhance a target source,
as will be described below. The subsections that follow
will describe how standard mid-side signals can be gen-
eralized and customized to extend this benefit to a much
larger class of stereo input signals. In order to do so,
the authors next introduce a more general source mixing
model that describes target sources that are not necessarily
center-panned.

1.2 Generalized Mixing Model
In order to develop a more generalized version of mid-

side signals, a more generalized mixing model for the target
source must be developed. This subsection describes such a
model; the next subsection will then develop a generalized
version of mid-side signals based on this model.

This model considers how a monaural source S1 with
magnitude |S1| and phase �1 for each STFT tile (ω, t) is
mixed to two channels (L and R) in STFT space. First, the
mono source is defined as

S1 (ω, t) = |S1 (ω, t)| exp (i �1 (ω, t)) , (3)

where it is noted that values of S1 exist for each STFT
tile of frequency bin ω and frame t ; going forward, S1(ω, t)
(and similar such quantities) shall be abbreviated as S1 (and
similar) for simplicity.

The mixing shall be modeled with regard to inter-
channel level difference (ILD) and inter-channel phase
difference (IPD). For purposes of developing general-
ized mid-side equations, each of these quantities is tem-
porarily treated as a single fixed value for all times and
frequencies.

In practice, these quantities will vary; the IPD must be
allowed to vary vs. frequency and time in order to model
sources mixed with reverberation or inter-channel delay.
IPD concentrations can also be easier to estimate than delay
(see Sec. 3 of [10]), especially in cases in which microphone
geometry and movement is unknown or difficult to model,
such as for binaural capture. The ILD is modeled by a
panning coefficient �1 ranging from 0 (pure left) to π/2
(pure right) under the constant power panning law [14],

432 J. Audio Eng. Soc., Vol. 71, No. 7/8, 2023 July/August



PAPERS STEREO SE USING CUSTOM MID-SIDE MONAURAL PROCESSING

leading to the following values of S1 in the L and R channels
when the IPD is zero:

L = S1 cos (�1)
R = S1 sin (�1) .

(4)

The IPD is described by the parameter �1. When mixing
is modeled with nonzero IPD, the relationship between �1

and �1 must be explicitly defined. One option [15] is to
declare the left channel phase to be the true source phase,
in which case the phase difference applies only to the right
channel. However, doing this creates a problem when de-
scribing source phase and IPD for an extreme right panned
source. In such cases, the left channel’s phase information
is unrelated to the target source and effectively random,
influenced by values in the noise floor or backgrounds.
Modeling the IPD as split evenly between the channels
creates a similar problem; the left channel is still random.

To address this, the authors use a mixing model in which
the channel where the source is stronger in power has pro-
portionally closer phase to the source phase �1 and the
other channel is proportionally less close to �1, and dic-
tated by �1. By careful selection of these proportions based
on �1 data, it can also be ensured that the phase difference
between the channels still equals �1. The L and R channels
are thus modeled as

L = S1 cos (�1) exp(i �1 sin2�1)
= |S1| exp (i �1) cos �1 exp(i �1sin2�1)
= |S1| cos �1 exp(i (�1 + �1sin2�1))

R = S1 sin (�1) exp(−i�1 cos2�1)
= |S1| exp (i �1) sin (�1) exp(−i �1cos2�1)
= |S1| sin (�1) exp(i (�1 − �1cos2�1)).

(5)

It can be seen from examining Eq. (5) that, for tiles in
which only the target source is present, the IPD, calculated
via ∠(L/R) (see [10]) will equal �1. Similarly, the ILD,
calculated via arctan(R/L) will equal �1. APPENDIX A fur-
ther explores these calculations and their relationship with
|S1| and �1.

1.3 Generalized Mid-Side
Now that a generalized target source mixing model has

been described, generalized mid-side signals may be de-
scribed based on this model. It can be seen that for a target
source mixed as specified in the Eq. (5) above, the authors
can define generalized mid and side signals that will have
the boosting and elimination properties that standard mid-
side signals have for center-panned signals. Eq. (6) below
specifies such signals, which are termed generalized mid-
side signals. (For a more detailed derivation of the side
signal, see “normalized weighted subtraction” on p. 38 of
[13]; the derivation of the mid signal is similar.)

M = c1L + c2 R
S = c3L + c4 R

(6)

where

c1 = cos �1 exp(−i�1sin2�1)

c2 = sin �1 exp(i�1cos2�1)

c3 = sin �1 exp(−i�1sin2�1)

c4 = cos �1 exp(i�1cos2�1).

The inversion equations (or stereo reconstruction equa-
tions), which return to conventional stereo signals, are

L = (M cos �1 + S sin �1) exp(i�1sin2�1)
R = (M sin �1 − S cos �1) exp(−i�1cos2�1).

(7)

As a point of clarification, the authors note that, for
a center-panned target source (for which �1 = π/4 and
�1 = 0), these generalized mid-side equations (and thus
the inversion equations) use different scaling than the stan-
dard mid-side equations but are otherwise identical. The
inversion equations still recover L and R channels with the
original scale intact. Using the noted values of �1 and �1

leads to

M = √
2/2 (L + R)

S = √
2/2 (L − R)

L = √
2/2 (M + S)

R = √
2/2 (M − S) .

(8)

1.4 Custom Mid-Side
The generalized mid-side signal concept of the previous

subsection can be further expanded by allowing the pa-
rameters �1 and �1 to vary vs. time and frequency. This
effectively allows for special mid and side signals that track
target source signals whose mixing parameters are dynamic.
An example is a target source that moves (relative to stereo
capture microphones) whose corresponding �1 and �1 val-
ues will vary with time. (And as noted above, �1 must be
allowed to vary with time and frequency to model reverber-
ant sources or those mixed with inter-channel delay.) The
time-varying and frequency-varying mid-side signals are
termed CMSS. Their mathematical expressions are iden-
tical to those introduced in the previous subsection, with
additional flexibility in that �1 and �1 are allowed to vary
by frequency sub-band b and time frame t ; they become
�1(b, t) and �1(b, t).

In order to generate CMSS, �1(b, t) and �1(b, t) which
are termed dynamic mixing parameters, must be estimated
and applied. To estimate these parameters, the authors use a
process described in [10] termed spatially identifiable sub-
band source detection (SISSD) (and where the parameters
are also termed thetaMiddle and phiMiddle). The parame-
ters are estimated at a frequency granularity of one param-
eter per quasi-octave frequency sub-band (sub-band edges
are [0; 400; 800; 1,600; 3,200; 6,400; 13,200; 24,000] Hz)
and updated once every 1,024 samples for 48-kHz sampled
audio.

The choice of granularity is critical; if very large fre-
quency bands are chosen, reverberant sources cannot be
well estimated, and if one chooses to update values in-
frequently vs. time. Then rapidly moving sources cannot
be tracked. However, choosing too fine a granularity leads
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to unreliable and unstable estimates. In the most extreme
case, one could estimate �1 and �1 for each STFT tile that
leads to the mid signal containing all energy and the side
signal containing none. In that case, the parameters do not
characterize meaningful target source mixing but rather the
individual statistics of a single tile or micro-region. Gran-
ularity trade-offs are further explored in Secs. 2 and 3 of
[10].

Using the noted update rate and frequency bands was
found to be perceptually effective when estimating dialog
for dialog enhancement applications for typical challenging
entertainment content mixes [10] and in pilot tests of patho-
logical mixes with multiple simultaneous human speakers
at different spatial locations. In such cases, the parameters
update often enough vs. time and frequency that they can
alternate between tracked human speakers and still capture
most of the speakers’ perceptually salient energy. This is
in general agreement with related speech source separation
techniques (e.g., [15]) that rely on the relatively infrequent
overlap of speech energy from multiple independent speak-
ers in STFT space. For cases in which the SISSD detects
both target speech and non-speech sounds, additional pro-
cessing (such as the SE systems described below) serves to
eliminate or attenuate such non-speech sounds.

The authors also note that the model used here charac-
terizes the mixing of a monaural source to two channels
using only the two (time-varying and frequency-varying)
parameters �1(b, t) and �1(b, t). In practice, some sources,
especially those mixed with heavy reverberation, cannot be
so simply characterized. In such instances, the model used
here effectively becomes a single wavefront approximation
of the source mixing (see e.g., APPENDIX A of [13]), which
is found to still lead to a large quality improvement over
existing baselines.

2 CMSS AND SE

2.1 Benefits of CMSS to SE
To summarize the above discussion, the authors have

now greatly expanded the types of signals that can
have a special relationship with a mid-side represen-
tation. A center-panned target source is boosted in a
standard mid signal and eliminated from a standard
side signal. With CMSS, however, any spatially concen-
trated target source detected by SISSD is boosted in
the CMS and eliminated or attenuated in the custom
side signal.

The authors now revisit why this is beneficial. Knowing
that a mid signal will contain the target source, whereas
the side signal will suppress it, means that an SE system
could process only the mid signal and still capture the target
source. However, for standard mid-side signals, this prop-
erty only holds if the target source is actually center-panned.
If the speech is captured or mixed with inter-channel de-
lay or is at a higher level in one channel than the other,
and the standard mid signal is used regardless, the mid
signal may have a lower signal-to-noise ratio (SNR) than
the side signal or channel signals. If an SE system were

Fig. 1. Stereo Speech Enhancement using CMSS.

to process only the standard mid signal for such a case,
it would lead to a result in which speech was underesti-
mated or even entirely missed. By using SISSD to cal-
culate parameters for CMSS, one can obtain a special,
robust mid signal, which boosts a target source, while a
special side signal eliminates or attenuates it. An SE sys-
tem can then process only the CMS before reconstructing
the output.

2.2 Proposed Signal Flow and SE
Given the above description of how CMSS are obtained,

the authors now describe a stereo processing method, de-
picted in Fig. 1, which can utilize any monaural SE sys-
tem. It is observed that the input signal enters as a stereo
pair (L , R), which the SISSD processes to obtain �1(b, t)
and �1(b, t), which, along with the stereo input signal, are
passed to the CMSS generator. The generator produces the
CMSS as described by Eq. (6) above. Note that CMS does
not include the side signal. The CMS is passed to a monau-
ral SE system, whose output is termed M ′. The side signal
is set to zero, and this signal is called S′. Finally, M ′ and S′

are passed to a module that calculates L ′ and R′ according
to the CMSS reconstruction Eq. (7), thereby producing the
system output. This output shall be termed the CMS pro-
cessed version; these signals are the ones evaluated as the
CMS condition in the evaluation section.

In principle, any monaural SE system could be used in the
overall system design proposed. For evaluation, two such
systems are used, one developed internally, and the other
an available state-of-the-art system. The internal system,
which is termed U-NetFB, is an SE network with a U-
Net type architecture, similar in concept to [16–18], but
the inputs are frequency band energies, rather than STFT
bin values, and the outputs are real-valued frequency band
softmask values. The second system, DPCRN [2], is chosen
based on its relatively high performance compared with
other state-of-the-art systems in a separate pilot test. Each of
these systems is deep learning–based and is of much greater
computational expense than the SISSD used to estimate
�1(b, t) and �1(b, t). As a result, the computational cost of
the proposed system is similar to a single instance of either
SE system without the SISSD; adding a second instance of
an SE system, however, approximately doubles the cost.

434 J. Audio Eng. Soc., Vol. 71, No. 7/8, 2023 July/August



PAPERS STEREO SE USING CUSTOM MID-SIDE MONAURAL PROCESSING

2.3 Alternative Processing Options
An overall system in which the SE component processes

CMS only has been proposed. However, there are alter-
natives that are now considered, along with their poten-
tial benefits and drawbacks. One such method, channel-
independent processing, will be proposed as a baseline for
comparison with CMS processing. There will also be de-
scriptions of why other options were not used as a proposed
system or baseline.

2.3.1 CMSS
First, the system proposed in the previous subsection

is considered, but with the custom side signal also pro-
cessed by a second instance of SE rather than set to zero.
This option was initially considered because it is more
spatially exhaustive than the proposed method: processing
both custom mid and side signals ensures that if speech
is present, some version of it will be processed. How-
ever, testing of various real-world signals (including stereo-
captured content and professionally generated stereo con-
tent) found that it is relatively rare for the custom side sig-
nal to contain significant undistorted speech energy com-
pared with the CMS. Processing a signal that contains little
to no actual speech risks that speech will be erroneously
detected, leading to perceptible errors. As noted above,
an extra instance of SE also approximately doubles the
computational cost. Given the cost and risks, this option
was declined for now. Nonetheless, the authors consider
this an area for future work because there are likely to
be some signals, namely those for which the SISSD per-
forms imperfectly, that benefit from CMSS processing vs.
CMS-only processing.

2.3.2 Standard Mid-Only
Another variation on the proposed system is to pro-

cess only the mid signal, but for a standard mid-side de-
composition. For center-panned speech signals, this will
have similar performance as CMS processing, whereas
for other types of mixing, speech will be attenuated or
missed entirely as noted above. For this reason, this option
was not considered as a viable alternative or meaningful
baseline.

2.3.3 Standard Mid-Side
A related idea is to process both standard mid and side

signals for a given input, because they are similarly spatially
exhaustive. For center-panned speech mixing, this approach
has similar risks and costs (two SE instances) compared
with CMSS processing, but for other speech mixing, this
approach is similar in performance to channel-independent
processing, because the standard mid-side signal pair may
be understood as a spatial rotation of the original stereo
signal pairs (see, e.g., Sec. 4.4 of [13]). Given the costs and
risks, the authors declined this option.

2.3.4 Alternative Center
Another novel option is to create an alternative center

stereo signal from the CMSS by using standard inversion

Fig. 2. Channel-Independent SE Processing.

Eqs. (2) or (8), which do not consider �1(b, t) and �1(b, t),
rather than the CMSS inversions in Eq. (7), which do. In
this case, the reconstructed stereo signal will re-mix the
spatial concentrations detected by the SISSD to make them
center-panned. Doing so allows for the processing of the
alternative center signal using any center-panned or center-
biased system, including those designed for enhancing di-
alog in entertainment content such as [19], which targets
center-panned speech, or [20], which favors center sources
by using an ILD-based mapping. Because these systems
were not available for processing private data, these options
were not pursued. (Alternative center signals also allow a
simplification of the system proposed in [10], in which the
described adaptations for non–center-panned sources be-
come unnecessary.) The authors plan to explore these ideas
in future work.

2.3.5 Channel Independent
Perhaps the most obvious alternative processing option

is channel-independent processing. In this case, depicted
in Fig. 2, each of the stereo input channels is processed
separately by an SE system. As noted above, for non–
center-panned speech mixing in which speech exists in
both channels, such processing is conceptually similar to
processing both standard mid and side signals. The sig-
nificant difference is for center-panned speech mixing, for
which channel-independent processing incurs the risk of
having different errors in each channel, which may lead to
outputs in which listeners perceive distortion. Given that
both center-panned and other dialog mixing will be used in
the evaluation, channel-independent processing was cho-
sen as a baseline to allow for meaningful comparisons
with CMSS in the greatest number of cases. Processing
only the standard mid signal described above, for example,
would produce essentially identical results as CMS pro-
cessing for center-panned speech, preventing meaningful
comparison.

2.4 Alternative Output Format Options
For the proposed CMS processing system and the base-

line channel-independent systems, it can be seen that stereo
signals are always output and that the architectures im-
plicitly or explicitly preserve the spatial information of the
estimated speech: an input with a center-left speech source
should lead to an output with a center-left speech source.
This is viewed as the more challenging case; generating
a mono signal or trivial stereo signal (e.g., one with both
channels identical) does not require the processing system
to maintain spatial fidelity. For this reason, stereo output is
chosen for use in the evaluation.
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However, there may be applications for which spatial
fidelity is not required or cannot be included, for exam-
ple, for voice communication systems that only transmit a
mono signal to a listener. For CMS-only processing, a mono
output may be obtained by having the system directly out-
put the processed CMS rather than use the inversion Eq.
(7). For channel-independent processing, a downmix can
be formed. The quality of mono output signals will be con-
sidered in future work. For the present, subjects were asked
in the evaluation to independently assess speech quality
and spatial quality. More details will be described for the
evaluation in the next section.

3 EVALUATION

The authors now describe subjective listening tests that
were used to compare the performance of the two systems
described in the previous section: CMS processing and a
channel-independent baseline. The test content, processing,
methodology, and results are described.

3.1 Test Content
For input content, stereo items with a variety of dialog

mixing styles are used. As noted in the introduction, the
authors ultimately aim for the proposed system to process
content from a variety of potential stereo sources including
two-mic mobile devices, two-mic laptops, binaural head-
phones, and stereo external mics, all of which have device-
dependent types of speech mixing. Pilot tests have been
done of the proposed and baseline systems on stereo in-
puts captured from known and unknown stereo recording
devices, as well as on stereo professionally generated con-
tent (PGC), i.e., typical TV and movie content, and found
results to be broadly similar in nature for low and moder-
ate SNR content. This is attributed to the generality of the
SISSD upon which CMSS are based; it is made to detect
spatial concentrations of energy, whether they indicate a
panned source with some ILD, such as is common in PGC,
or a source mixed with inter-channel delay or reverb as is
expected for environmental capture.

The present evaluation uses specific PGC items for which
the dialog mixing styles can be concisely and accurately
described. This allows for evaluation of the proposed and
baseline systems for these specific kinds of mixing. Table
1 describes the items by their background type (given as
item name), approximate SNR (“Low” indicating less than
approximately 5 dB and “Mod” indicating approximately
5–10 dB), speaker gender presentation (in which “B” indi-
cates both male and female speech in the same item), speech
mixing style (C indicating center-panned, L-C center-left,
and C-R center-right), and genre.

3.2 Test SE Systems
To create the signals used in the test, the processing

shown in Figs. 1 and 2 is used. For the SE systems, the U-
NetFB system described in Sec. 2 is used for both the CMS
and baseline conditions. That is, for CMS, one instance
of U-NetFB is run on the CMS only. For the channel-

Table 1. Content items for evaluation.

Name SNR Gender Dialog Mixing Genre

CrowdSing Low M C Sports
RaceCars Low M C Motorsports
ShipCrew Mod B C Scripted
SciFiSFX Mod F C Movie
Outdoors2 Mod M C Scripted
Bobsled Low B C Sports
Orchestral Low F C Ad
UrbanSFX Mod M Varies Scripted
Cheering Low M C-R Sports
HallDin Mod M Reverb Movie
Outdoors Mod F L-C News
PopMusic Mod F L-C Ad

Table 2. Attribute descriptions.

Attribute Description

Preference Overall preference. Subjects were
instructed to identify whether they
preferred stimulus A or stimulus B.

Speech Quality Identification of speech distortion.
Subjects identified which signal had
less distorted speech.

Less Non-Speech Identification of non-speech sounds.
Subjects identified which signal had
less perceptible non-speech sounds.

Spatial Quality Naturalness of spatial image. Subjects
identified which system sounded more
spatially natural and in-line with their
expectations for a high-quality
experience.

independent baseline, two instances of U-NetFB are run,
one on each channel. Additional listening was also done
using DPCRN, with similar structure: for the CMS condi-
tion, one instance of DPCRN processed the CMS, and for
the channel-independent baseline, two instances of DPCRN
were used, one for each channel.

3.3 Test Methodology
Nine subjects participated in this experiment and all par-

ticipants were highly trained in critical evaluation of au-
dio signals. This test was performed in a quiet listening
environment with high-quality headphones. Subjects were
presented with 12 pairwise comparisons in which they eval-
uated four attributes per comparison. In each comparison,
subjects were presented with two test stimuli (stimulus A
and stimulus B)—each stimulus per trial contained identi-
cal source content that was prepared using either CMS or
the channel-independent baseline (CI). The system ordering
was randomized across all 12 trials. Subjects were invited
to loop sub-sections of the content and to freely switch
back and forth between stimulus A and stimulus B in each
trial. The four attributes under test were overall preference,
speech quality, less non-speech, and spatial quality, which
are defined in Table 2.
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Fig. 3. Choice likelihood across all items and subjects for each
question.

Fig. 4. Box plots showing distributions on choice likelihood across
all items and subjects for each question.

3.4 Results
Results are shown in Figs. 3, 4, 5, and 6. Fig. 3 shows that

CMS was selected as the preferred system 73% of the time
compared to the CI system, across all subjects and all con-
tent items. Subjects indicated that CMS processing resulted
in better speech quality in 64% of the comparisons under
test. Subjects indicated that CMS produced less percepti-
ble non-speech sounds in 72% of the comparisons under
evaluation. There was not a notable difference in spatial
quality performance across the systems under test. (Addi-
tional, less formal listening considering the same content
items, conditions and attributes, but with DPCRN [2] in-
stead of U-NetFB for SE processing, found similar audio
characteristics.)

Fig. 5. Correlation between questions and preferences across sub-
jects.

There was substantial variation between subjects across
all attributes under evaluation. Fig. 4 depicts the distribu-
tion of choice likelihood across all subjects per attribute.
This distribution will likely tighten with additional data
collection.

Additional analysis found that better speech quality was
slightly more correlated to a selection of preference com-
pared to less non-speech and spatial quality (Fig. 5). A
considerably larger correlative range for spatial quality is
seen relative to both speech quality and less non-speech,
indicating that for some subjects, spatial quality did not
substantially influence a preference outcome. Figs. 3 and 4
are consistent with this result. There is no overall trade-off
observed between preference and processing cost, because
the less costly system was also the more preferred system
overall.

Fig. 6 shows the choice likelihood for each of the four
attributes for each content item listed in Table 1. Addi-
tionally, the two rightmost bar pairs for each subplot show
results for (1) all items with center dialog mixing and (2)
all other items. There is no observed significant difference
in choice likelihood for any of the four attributes with re-
gard to mixing type. The single item for which CMSS was
less preferred overall, “Bobsled,” includes Bobsled sound
effects that are mixed the same as the dialog (center). In fu-
ture work, the authors will explore how such backgrounds
can impact CMSS and CI processing.

In future work, the authors will also consider how to
use existing monaural automated metrics for SE, or novel
ones, to evaluate CMS and baseline performance. A pilot
investigation found that using existing monaural automated
SE metrics to evaluate the stereo CMS and baseline results
by averaging the metric values for each channel did not yield
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Fig. 6. Choice likelihood for individual content items, all center dialog items, and all non-center dialog items.

results with a meaningful relationship with the subjective
data.

4 CONCLUSION AND FUTURE WORK

A theory was developed supporting use of CMS as input
to any SE system. The theory was based on the idea that
the benefits of mid-side signals for center-panned speech
sources could be expanded to a much larger class of signals
containing speech by using CMSS informed by the SISSD
of [10]. An evaluation on various types of speech mixing
provided evidence to support the present theory, because the
CMS processed items were preferred over items processed
by the same SE system in a channel-independent config-
uration. This occurred even with the CMS system using
only approximately half the computation of the channel-
independent system.

In future work, the authors will perform additional testing
of content captured in specific real-world contexts, namely
via the two mics on specific, commonly used devices, in
specific environments, for applications including UGC cap-
ture and voice communications. In particular, the authors
will attempt to find or generate content that contains spa-
tially concentrated non-speech sounds, which is expected
to be able to strain the SISSD components of the proposed
system [10]. Early pilot testing of UGC content signals
from a variety of sources of capture found results that were
broadly similar to those on the tested content items for low

and moderate SNRs. For all inputs, it will be investigated
whether results can be improved by running SE on both the
custom mid and custom side signals.

It was noted that existing automated SE metrics did not
provide data with a meaningful relationship with the sub-
jective data presented here. The authors will investigate
the underlying causes and consider modifications of these
metrics or new ones.

The authors thank Heidi-Maria Lehtonen, Scott Nor-
cross, Jonas Samuelsson, Xiaoyu Liu, Dan Darcy, Audrey
Howard, and Libby Purtill for their assistance with this
publication.
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A.1 STEREO-POLAR DATA

In the CMSS processing system described above, it was
noted that the SISSD estimates �1(b, t) and �1(b, t) are
obtained from STFT data. It was also noted that the STFT
tiles that contain only a particular target source lead to
particular estimates. To develop a fuller understanding of
these cases, the authors presently describe a mapping for
the data in a typical stereo STFT representation to an al-
ternative form termed stereo-polar coordinates. Recall that
stereo STFT data is typically represented as the real and
imaginary components or magnitude and phase for each
channel. The estimation process described in the SISSD
first transforms it into an alternative, stereo-polar coordi-
nates representation (SPCR), which allows for parameter
estimation as described in [10]. When including all four
values below, SPCR is convertible to and from a conven-
tional stereo STFT representation and includes values for
the following for each STFT tile, where L and R are the
STFT representations of the left and right channels.

U =
√

|L|2 + |R|2

θ = arctan

( |R|
|L|

)

φ = ∠
(

L

R

)

ψ = ∠L − φsin2θ

= ∠R + φcos2θ.

The first parameter, U , is the combined channel magni-
tude and may be thought of as the data for a combined mono
spectrogram. The second parameter, θ, is the mapped ILD,
which ranges from 0 (for L much greater in magnitude)
to π/2 (for R much greater in magnitude). Unlike alterna-
tives (e.g., Eq. (22) in [15]), it is strictly bounded. Together,
these two quantities describe the stereo-polar magnitude
of an STFT tile. The third parameter, φ, describes the IPD
from −π to π radians, and the fourth, ψ, the base phase
also from −π to π radians; together these describe stereo-
polar phase. The choice of ψ here with respect to φ follows
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a similar convention as for �1 above with respect to �1

in the generalized target signal model. Altogether, the four
quantities above are termed the SPCR. L and R can be
reconstructed from the SPCR by calculating:

L = U cos θ exp(i(ψ + φsin2θ))

R = U sin θ exp(i(ψ − φcos2θ)).

Similarities and differences are noted between the quan-
tities (�1, �1, �1, |S1|) and (θ, φ, ψ, U ). The values |S1|
and �1 represent the magnitude and phase of a monaural
target source (which can vary across each bin in STFT
space), and �1 and �1 are its mixing parameters that char-

acterize its presence in two channels (these parameters vary
only if the source moves, is reverberant, or is mixed with
inter-channel delay). The values (θ, φ, ψ, U ), however,
are detected for each STFT tile and may or may not coincide
with the target source values depending on whether a given
STFT tile is dominated by the target source, by interferers,
or some combination. (See, e.g., [15].) If a given tile is dom-
inated by the target source, it is easy to see by substitution
of the L and R values for the generalized source model in
Sec. 2 that (θ, φ, ψ, U ) will equal (�1, �1, �1, |S1|); this
fact forms the basis for the SISSD estimation described in
[10], which analyzes distributions on the values (θ, φ, U )
to calculate �1(b, t) and �1(b, t).

THE AUTHORS

Aaron Master Lie Lu Nathan Swedlow

Aaron Master received a B.S.E.E. from the University of
Rochester (NY) in 1999, B.Mus. from the Eastman School
of Music in 1999, M.Phil. in Engineering from the Univer-
sity of Cambridge (UK) in 2000, and Ph.D. in Electrical
Engineering from Stanford University in 2006. From 2006
to 2013, he worked as a Research Engineer and UX Direc-
tor at SoundHound Inc., where he was a lead inventor of
technologies allowing combined query-by-humming and
automatic content recognition (ACR), instant-response
ACR, automatically synchronized lyrics, and song popu-
larity prediction. Apps he managed received awards from
the New York Times, Time magazine, CNET, and Billboard.
From 2013 to 2022, Dr. Master served as Manager and
Senior Manager of Sound Technology at Dolby Labora-
tories, where he led work on source separation for dialog
enhancement. Additional research interests include spatial
audio, music information retrieval, and human perception.
Dr. Master is first author of over 30 peer-reviewed papers
and patents.

•

Lie Lu received his B.S. and M.S. degrees in Electrical
Engineering from Shanghai Jiao Tong University, China,
in 1997 and 2000, respectively, and a Ph.D. degree from
Delft University of Technology, The Netherlands, in 2009.
He is currently a Senior Member of Research Staff at Dolby
Laboratories in San Francisco. Before that, he was with Mi-
crosoft Research Asia, Beijing, China, from 2000 to 2010,
first in the Media Computing group and then in the Speech
group. His current research interests include machine learn-
ing, signal processing, content-based audio analysis, and
music information retrieval. He has published over 60 pa-
pers in scientific journals and leading conferences in the
area of audio and speech processing and is an author on
over 70 issued or pending patents.

•
Nathan Swedlow is a neuroscientist and musician who

graduated from Oberlin College and Conservatory in 2015.
Through perceptual and physiological research, he works to
uncover how technology impacts multi-modal sensory ex-
periences. Nathan has worked at Dolby Laboratories since
2016. Outside of his work at Dolby, Nathan is an active
musician and audio engineer.

440 J. Audio Eng. Soc., Vol. 71, No. 7/8, 2023 July/August


