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ABSTRACT

This work addresses the problem of noise reduction in tape recordings using a deep-learning approach. First, we
build a data set of audio snippets of tape noise extracted from different functional tape equipment — comprising
open reel and cassette. Then, we adapt and train an existing deep-learning architecture originally proposed to
remove noise from 78 RPM gramophone records. The model learns from mixtures of the noise snippets with
clean audio excerpts at different SNRs. Experimental results validate the approach, showing the benefits of using
real tape recording noise in training the model. Furthermore, the data set of tape noise snippets and the trained
deep-learning models are publicly available. In this way, we encourage the collective improvement of the data set
and the broad application of the denoising approach by sound archives.

1 Introduction

Magnetic tape recording was the dominant technology
for audio recording during several decades of the XX
century. It has been widely available since the 1950s
and was gradually taken over by digital audio recording
technology since the standardization of the compact
disc format in 1980. However, magnetic audio tape
formats are now obsolete, so the only way to preserve
tape recordings and make them accessible is their digi-
tization and transfer to safe digital repositories as long
as replay equipment is in operable condition and the
tapes have not deteriorated [1, 2, 3]. After the sound
transfer process, either from tapes or discs, digital au-
dio restoration takes place to treat different types of
disturbances and degradation, such as thumps, clicks,
and hiss [4].

Traditional methods for digital audio restoration are
based on Digital Signal Processing (DSP) techniques,
such as Wiener filtering and autoregressive (AR) mod-
elling [5, 6, 7]. However, the significant progress
brought by deep learning [8] to computer vision [9]
and natural language processing [10] has also extended
to the audio domain, improving the state-of-the-art in
problems like speech recognition [11] and sound source
separation [12]. Consequently, some recent works have
addressed audio restoration tasks using a deep learn-
ing approach [13], including audio upsampling [14],
bandwidth extension [15], and denoising [16].

The work by Moliner et al. [17] is particularly relevant
to the present paper since it proposes a U-Net model for
noise reduction inspired by [16] and its application to
78 RPM gramophone recordings. The method can sup-
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press colored noise, rumble, and impulsive events [17].
This versatility is a clear advantage compared to the
DSP approach, in which different techniques must be
applied to different types of imperfection. For instance,
while stationary noise is typically treated by spectral
subtraction [18], clicks and thumps are treated indepen-
dently by firstly detecting them and then interpolating
the missing samples [17, 19]. According to the authors,
one of the keys to the high performance reported in [17]
was the use of more realistic noise data compared to
their inspiring work [16], which uses a similar deep
network architecture. The construction of the noise
data set was possible thanks to a collaborative project
to massively digitize 78 RPM records.1

In this work, we draw upon Moliner et al. [17] and
conduct a series of experiments to test the validity of
their deep-learning approach for denoising tape record-
ings. To that end, we build a data set of audio snippets
of tape noise extracted from different functional tape
equipment — comprising open reel and cassette. We
then train a deep learning model using the architec-
ture proposed in [17] on mixtures of the noise snippets
with clean audio excerpts at different levels of signal-
to-noise-ratio (SNR). Finally, we evaluate the obtained
model on a test data set using objective methods and
compare it to the model released in [17] and to a tradi-
tional noise reduction method [18]. The results attest
the effectiveness of the approach for noise reduction in
analog tape audio recordings, showing the benefits of
using real tape recording noise for training the model.

The data set of tape noise audio fragments and the
trained deep-learning models are being released for
public access with the publication of this paper. We
encourage the collective improvement and expansion
of the data set by contributions of individuals and in-
stitutions. We believe that sound archives can play a
key role in extending the noise data set with samples
of their operational equipment. An improved data set
would allow for training better models, either more
general or targeted to specific tape recording devices.

The rest of the paper is organized as follows. The next
section describes the deep-learning model, the training
strategy, and the noise and clean-audio data sets used
for training and evaluation. Section 3 presents the
experiments and results. The paper ends with a critical
discussion and some directions for future work.

1The Great 78 Project: https://great78.archive.org/

2 Method

2.1 Clean and noisy data collection

Two data sets are used to train the model and evaluate
its performance: one with clean music recordings and
another with audio fragments of tape noise. The two
data sets are artificially combined to simulate the effect
of real tape recordings by adding tape noise to the clean
music audio. The process is represented by Equation 1,
where y, and z correspond to clean music and tape noise
audio fragments, respectively, whilst x is the simulated
tape audio recording segment. The α parameter con-
trols the SNR, while the β parameter controls the scale
factor. As a data augmentation scheme the SNR and β

are chosen from a log-uniform distribution between 6
and 32 dB, and from 0 to -6 dB, respectively, for the
training stage.

x = β (y+α z) (1)

Each data set was split into train, validation, and test,
as described in the following.

2.1.1 Data set of clean music audio

As in [17], the clean music audio is taken from the Mu-
sicNet2 data set [20]. It is a collection of 330 freely —
licensed classical music recordings for a total duration
of 34 hours, commonly used for training models and
as a benchmark for comparing results. As available,
the data is organized according to the train/test split
described and used in [21], in which only a small (1%)
but representative subset is selected for testing. We
stuck to the test set but divided the remaining data into
10% for validation and 90% for training.

2.1.2 Data set of tape noise audio

For building the analog tape noise data set, blank tapes
were reproduced in different replay devices, and their
output was digitized using an M-Audio Fast Track Pro
audio interface at 44.1 kHz sampling rate. The equip-
ment used was available at the National Center for
Music Documentation3, where the first author acts as a
technical consultant. All the devices were serviced and
calibrated before doing the tape noise recordings.

Five open reel replay devices were used: two semi-
professional Revox A77 recorders — one normal-speed

2Avaiable from zenodo: https://doi.org/10.5281/zenodo.5120004
3http://www.cdm.gub.uy/ (Montevideo, Uruguay)
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model (NS) and one high-speed model (HS) —, a vin-
tage tube Revox C-36 recorder, and two portable Uher
recorders — a 4000 report S and a 4000 report L. The
blank 1/4" open reel tape used was a Premium Analog
Recording Tape by ATR Magnetics. In addition, a dou-
ble deck Technics TR-575 compact cassette player with
a blank TDK-HX-S60 cassette was recorded at nominal
speed. Each of the cassette decks was recorded sepa-
rately. Table 1 summarizes all the replay devices used
and at which speed they were recorded. An illustrative
picture of each device is shown in Figure 1.

Table 1: Replay devices used for building the tape
noise data set and their corresponding speeds.

Recorder Speeds (IPS)

Revox A-77 (NS) 7.5 3.75
Revox A-77 (HS) 7.5 15

Revox C-36 7.5 3.75
Uher 4000 L 3.75 1.875
Uher 4000 S 3.75 1.875

Technics TR-575 1.875

The tape noise data set totals 2 hours of audio, cor-
responding to 10 minutes for each device and speed
combination (considering the two cassette decks), and
it is released for public access with this publication.4

2.2 Noise reduction model

2.2.1 Network architecture

A two-stage U-net [22] architecture with a supervised
attention module (SAM) initially proposed in [17]
was utilized for music denoising. The input of both
stages is the complex-valued short-time Fourier trans-
form (STFT) of the noisy signal—treated as two real-
valued separate channels—appended with a frequency-
positional embedding. Let x be the audio fragment of
the noisy input signal sampled at 44.1 kHz. The STFT
of x, denoted as X , is computed with a window length
of N = 2048 and a hop size of h = 512 samples.

The first stage estimates the STFT of the residual noise
fragment, Ẑ, and passes it to the SAM to propagate only

4https://github.com/IgnacioIrigaray/
AnalogAudioTapeDenoising

the relevant features to the second stage. Additionally,
the STFTs of the residual noise estimate and the noisy
input signal are summed to get an estimation of the
STFT of the clean signal, i.e. Ŷ1 = X + Ẑ.

The STFT of the clean signal is also estimated in the
second stage, denoted as Ŷ2, from the output of the first
stage and the STFT of the noisy input signal. According
to the authors of [17], this two-stage schema minimizes
the occurrence of annoying musical noise artifacts. We
refer the reader to [17] for further details of the network
architecture.

2.2.2 Training process

The loss function of equation 2 is minimized during
training. The mean absolute error between the output
of both stages (i.e. the estimates of the STFT of the
clean signal, Y k

1 and Y k
2 ) and the STFT of the clean

signal Y k is calculated for each bin k of the STFT.

L =
1
K ∑

k
(|Ŷ1

k−Y k|+ |Ŷ2
k−Y k|). (2)

The Adam optimizer was used with parameters β1 =
0.5, β2 = 0.9, the learning rate was initialized in 1e−4
and divided by 10 every 100.000 steps. The model was
trained for 320000 steps in an RTX 3090 GPU with
24 Gb of RAM, and the training time was 48 hours.
The value of the loss for the train set and the validation
set were used for the training stopping criteria.

3 Experiments and results

The performance of the model trained on the tape noise
data (Tape Noise Model) was assessed on a test data
set using objective evaluation measures. For compari-
son, two other methods were also tested with the same
evaluation setup: the model released with the original
paper [17] — which was trained on 78 RPM noise data
(78 RPM Noise Model) —, and the traditional spec-
tral subtraction method (Spectral Subtraction) [18] —
using the noisereduce5 python package [23].

The test data set was build combining clean music
fragments with tape noise fragments taken from the
corresponding test sets. A total of 100 fragment pairs
were selected, with a duration of 10 seconds. The
fragments were combined at two different SNRs: 10

5https://pypi.org/project/noisereduce/
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Technics TR-575 Uher 4000 report L Revox C36 Reovx A77

Fig. 1: Type of replay devices used in the tape noise data set.

Table 2: Results of the evaluation experiment.

SNR Method ∆ SNR ∆ PEAQ

10dB
Tape Noise Model 8.32 1.74

78 RPM Noise Model 4.23 0.82
Spectral Subtraction -7.31 0.23

16dB
Tape Noise Model 4.61 1.76

78 RPM Noise Model 1.89 1.16
Spectral Subtraction -13.2 0.26

dB simulating an adverse recording scenario, and 16 dB
for a more favorable one. Note that in the experiments
in [17] an SNR of 3 dB is also reported, which may be
reasonable for 78 RPM recordings but is not realistic
for tape recordings and was therefore discarded.

Two objective evaluation metrics were computed for
each fragment comparing the original noisy music sig-
nal with the denoised output signal: the SNR and the
perceptual metric PEAQ [24]. The gstreamer [25]
plugin gstPEAQ [26] was used for computing the
PEAQ evaluation measure. The average gain ∆ SNR
and ∆ PEAQ over the whole test set is reported in Ta-
ble 2 for each method and for the two SNR conditions.

4 Discussion

In this work we applied a deep-learning approach to the
problem of noise reduction in tape recordings. To do
that, we build a data set of audio excerpts of tape noise
by reproducing blank tapes in different replay devices
and digitally recording their output. The tape noise data
set is then combined with clean music recordings to

train an existing deep-learning architecture originally
proposed to remove noise from 78 RPM gramophone
records [17]. Finally, we evaluate the obtained model
on a test data set using the SNR and PEAQ objective
measures, and compare it to the model released in [17]
and to a traditional noise reduction method [18]. The
experimental results, see Table 2, show the effective-
ness of the deep learning approach producing a noise
reduction greatly superior to the one of the traditional
method. Besides, the evaluation also shows the benefits
of using real tape recording noise for training the model,
since the model trained on tape noise samples clearly
outperforms the model trained on noise extracted from
78 RPM discs.

The data set of tape noise fragments and the trained
deep-learning models are being released for public ac-
cess with the publication of this paper.6 We plan to
extend the number of replay devices on the data set and
we welcome external contributions of individuals and
institutions. We believe that sound archives can play a
key role in extending the noise data set with samples
of their operational equipment.

There are several possible strands for future work. In-
stead of a generic noise reduction model like the one
produced in this work, over-fitting could be beneficial
in some application scenarios. In future works, we plan
to apply fine-tuning techniques to produce models for
denoising adapted to a specific replay device. In addi-
tion, subjective evaluation tests should be conducted to
perceptually validate the results obtained in this work.

5 Acknowledgments

We thank the National Center for Music Documentation
(Montevideo, Uruguay) for their support.

6https://github.com/IgnacioIrigaray/
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