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ABSTRACT

We present a purely real-valued variant of the extended vector-based EB-ESPRIT (REVEB-ESPRIT), an algorithm
that estimates multiple simultaneous directions of arrival (DOAs) from Ambisonic signals, which are either encoded
mono sounds or captured via a spherical microphone array. Our proposal uses fully real-valued spherical harmonics
and DOA vectors and presents the required extended set of recurrence relations. Moreover, we propose a real-valued
joint Schur decomposition using inverse iterations to efficiently solve the simultaneous diagonalization problem
that is inherent in EB-ESPRIT algorithms. We evaluate the proposed algorithm in free-field conditions with a
varying number of simultaneously estimated DOAs and varying signal-to-noise ratios. Our analysis shows a slight
increase in speed and accuracy due to the proposed real-valued formalism, and in particular a noticeable increase
in speed and accuracy when detecting many simultaneous DOAs. A reference implementation of the proposed
algorithm is provided online.

1 Introduction
Works by Teutsch and Kellermann [1, 2] introduced
EB-ESPRIT, an algorithm that facilitates the simultane-
ous estimation of multiple directions of arrival (DOAs)
from Ambisonic signals, i.e., coefficient signals of the
spherical harmonics (SH). In a nutshell, EB-ESPRIT
integrates the SH-domain signal covariance matrix into
SH recurrence relations and, by exploiting the linear
relationship between the covariance matrix and the
signal subspace, solves for the desired DOAs using a
suitable matrix factorization. Despite its mathematical
elegance, the method suffers from numerical instability

for source directions in the horizontal plane.
Several methods based on other recurrence relations
were introduced to circumvent the numerical instability,
e.g. [3, 4], but they either exhibit ambiguities or need an
additional matching of parameter pairs. More recently,
the vector-based EB-ESPRIT (VEB-ESPRIT) method
was developed independently by Jo and Choi [5] and
Herzog and Habets [6]. It solves the deficiencies of
the earlier algorithms by employing three recurrence
relations. As a consequence, the algorithm relies on a
simultaneous diagonalization of three matrices to re-
veal the DOAs as their joint eigenvalues.
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In [7], the vector-based EB-ESPRIT was extended
to achieve a simultaneous estimation of up to
N2 + b4N/3c instead of N2 DOAs, where N is the max-
imum order of the SH decomposition. While this ex-
tended vector-based EB-ESPRIT (EVEB-ESPRIT) is
able to deliver the largest number of simultaneously
detectable DOAs, it is designed using complex-valued
SHs and complex-valued entries for the DOA vectors.
In [8, 9, 10], variants of the VEB-ESPRIT and its exten-
sion were proposed that aim for higher computational
efficiency by employing real-valued computations. The
semi-real-valued algorithm from [8] uses real-valued
DOA parameters and real-valued covariance matrices
but employs complex-valued SHs and steering matri-
ces. In [9] and [10], a real-valued VEB-ESPRIT and
EVEB-ESPRIT are defined using conversion matrices
to translate complex-valued recurrence relations and
complex-valued SHs to a real-valued formulation. Mul-
tiarray EB-ESPRIT (MEB-ESPRIT) [11] introduced
a fully real-valued, non-extended formalism and the
joint generalized Schur decomposition to solve coupled
DOA parameter detection with multiple distributed ar-
rays.

So far, the simultaneous diagonalization was typically
solved using an ad-hoc method that diagonalizes the
three problems individually and then applies the eigen-
vectors of a single problem to estimate the eigenval-
ues of the joint problem. This ad-hoc method is com-
putationally efficient and was found to perform simi-
larly to the iterative simultaneous diagonalization algo-
rithms from [12] in free-field scenarios [6, 7]. JAPAM
(joint eigenvalue decomposition algorithms using a
parametrized matrix) [13] is a class of block coordinate
algorithms that is defined using different kinds of 2×2
matrix factorizations. Amongst others, JAPAM-5 was
shown to outperform the algorithms from [12] while be-
ing more computationally efficient than the algorithms
based on the polar decomposition [13]. In the con-
text of the vector-based EB-ESPRIT, it was shown that
JAPAM-5 outperforms the ad-hoc method in a test case
including a room simulation [8].
The joint Schur decomposition (JSD) was used in [14,
15] to solve the joint eigenvalue problem, however with
2× 2 iterations that tend to converge slowly. In [16],
the joint generalized Schur decomposition uses inverse
iterations that converge quickly.

This paper describes a simplified, fully real-valued
extended vector-based EB-ESPRIT algorithm for the
single-array setting to detect what is currently known

as the highest possible number of simultaneous DOAs
in EB-ESPRIT [7]. The maximum number of es-
timated DOAs is reached via the extension of the
SH recurrences as in EVEB-ESPRIT, but is provided
here for fully real-valued SHs. In comparison to
the MEB-ESPRIT framework, the simplifications con-
cern the single-array case and the specialization of
the joint generalized Schur decomposition to the joint
Schur decomposition (JSD). We compare the pro-
posed REVEB-ESPRIT algorithm using JSD diago-
nalization to real- and complex-valued formulations
of EVEB-ESPRIT using the ad-hoc diagonalization
method, and to the real-valued formulation using diag-
onalization via JAPAM-5. Our results from anechoic
simulations with different numbers of simultaneous
DOAs and varying signal-to-noise ratios (SNRs) sug-
gest a high performance that is better or on par with
the best of the compared algorithms while being either
more computationally efficient than or comparable to
the fastest algorithm.

1.1 Ambisonics

Ambisonics [17] is a scene-based multi-channel audio
format consisting of spherical harmonic (SH) coeffi-
cient signals χm

n (t). Their expansion over the spherical
harmonics (SHs) Y m

n (θθθ) delivers a continuous surround-
with-height signal depending on the DOA unit-vector
θθθ = [x, y, z]T that can be evaluated at any direction θθθ ,

s(θθθ , t) =
N

∑
n=0

n

∑
m=−n

χ
m
n (t)Y

m
n (θθθ). (1)

The SHs Y m
n (θθθ) of order n and degree m are a sequence

of orthogonal spherical polynomials of the degree n and
in their typical formulation they contain trigonometric
functions of the degree m in the azimuth ϕ = arctan y

x
and the associated Legendre functions Pm

n of the cosine

of the zenith angle ϑ = arctan
√

x2+y2

z . Here, we use a
real-valued definition of the SHs [18]

Y m
n (θθθ) =N|m|n P|m|n (cosϑ)

{
cos(mϕ) for m≥ 0
sin(|m|ϕ) for m < 0

,

(2)

using the N3D normalization factor

N|m|n = (−1)m
√

(2n+1)(2−δm)
4π

(n−|m|)!
(n+|m|)! that involves

the binary Kronecker Delta: δm = 1 for m = 0, and 0
elsewhere.
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1.1.1 Encoded directional and diffuse signals

Ambisonic signals can be composed of a mixture
of directional and diffuse signals. The vector
χχχ(t) = [χ0

0 (t),χ
−1
1 (t), . . . ,χN

N (t)]
T of its coefficient sig-

nals is obtained as

χχχ(t) =YYYsss(t)+ννν(t) , (3)

where the matrix YYY encodes a vector of corre-
sponding J directional signals sss(t). The columns
of YYY = [yyySH(θθθ 1), . . . ,yyySH(θθθ J)] contain encoding vec-
tors yyySH(θθθ) = [Y 0

0 (θθθ),Y
−1
1 (θθθ), . . . ,Y N

N (θθθ)]T of verti-
cally stacked (N +1)2 SHs up to the highest order
n≤ N. Additive noise and diffuse sound field con-
tent ννν(t) is directly described as a set of incoherent or
uncorrelated Ambisonic signals.

1.1.2 Encoded spherical array signals

A spherical microphone array (SMA) records sounds
from multiple directions with its microphones that are
arranged on the surface of a sphere. The recorded
signal p(θθθ i, t) of a microphone at position θθθ i can be
encoded into Ambisonic signals χm

n (t) by inverting the
model equation

p(θθθ i, t) =
∞

∑
n=0

n

∑
m=−n

[χm
n (t)?bn(t)]Y m

n (θθθ i) . (4)

SMA theory to estimate χm
n (t) is well covered, e.g.

in [19, 20, 21, 17]. The model includes the sampled
spherical harmonics Y m

n (θθθ i), which are invertible as
a matrix for a finite n ≤ N, and the sensitivities bn(t)
in the frequency domain bn(ω) = in[(ka)2h′n(ka)]−1,
which are invertible filters when accepting realistic
white noise gain limits at low frequencies and the spa-
tial aliasing limits at high frequencies. It is useful to
focus on this operational frequency range, here.

1.2 Signal subspace of observed signals

If only the signals χχχ(t) are known, be it from the en-
coded content of an SMA recording or a directional mix
of mono signals, DOAs are only contained implicitly.
Considering an observed block of B time samples

XXX = [χχχ0, . . . ,χχχB−1], (5)

we estimate the sample covariance as RRR = 1/BXXXXXXT.
We denote the eigenvectors of RRR corresponding to the

largest J eigenvalues α j in ααα as signal subspace eigen-
vectors and collect them in the columns of UUU ,

RRRχ = [UUU ,UUU0]diag{ααα}[UUU ,UUU0]
T. (6)

While encoding vectors YYY in (3) cannot be estimated
directly from the signals χχχ(t), the signal subspace UUU
and the steering vectors YYY span the same subspace
SX = span(YYY ) = span(UUU). Accordingly, there must be
a non-singular matrix TTT ∈ RJ×J relating both YYY =UUU TTT .
This is a hint towards YYY , with no DOA vectors yet, that
is exploited by all EB-ESPRIT algorithms.

2 Extended REVEB-ESPRIT

The challenge mastered by EB-ESPRIT is to retrieve
the multiple DOAs θθθ j from a short-term observation
of the sigfnal space UUU . We propose a real-valued, ex-
tended, vector-based EB-ESPRIT (REVEB-ESPRIT).

2.1 DOA parameters as diagonal, linear factors

Vector-based EB-ESPRIT involves re-expanding the
SHs YYY multiplied by entries of the DOA vector θθθ j =
[x j,y j,z j]

T, denoted as xxx = [x j], yyy = [y j], zzz = [z j], as
diagonal factors, YYY diag{xxx}, YYY diag{yyy}, YYY diag{zzz}.
Multiplying any SH Y m

n (θθθ) by x, y, or z increases the de-
gree of the resulting spherical polynomial to n+1. As
with other families of orthogonal degree-n polynomials,
re-expansion of any SH multiplied with z = cosϑ must
only involve SHs with the indices n± 1, due to the
associated Legendre functions involved. Multiplication
with x or y affects the azimuth harmonics by trigono-
metric addition theorems and therefore additionally
involves the shift m±1, yielding altogether

Y m
n x = (1−δm) sgn−m

σmσm−1
[−wm

n Y m−1
n−1 +w−m+1

n+1 Y m−1
n+1 ] (7)

− (1−δm+1) sgnm
σmσm+1

[w−m
n Y m+1

n−1 −wm+1
n+1 Y m+1

n+1 ],

Y−m
n y = sgn−m

σmσm−1
[−wm

n Y m−1
n−1 +w−m+1

n+1 Y m−1
n+1 ] (8)

+
(1−δm)(1−δm+1) sgnm

σmσm+1
[w−m

n Y m+1
n−1 −wm+1

n+1 Y m+1
n+1 ],

Y m
n z = vm

n Y m
n−1 + vm

n+1Y m
n+1. (9)

The lengthy derivation of these relations is made avail-
able online, together with a MATLAB script for nu-
merical validation1. The coefficients are equivalent to

1https://git.iem.at/thomasdeppisch/
real-sh-recurrence-relations
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those in [22, 11], and involve a non-zero sign function
sgnm and re-normalization σm:

wm
n =

√
(n+m−1)(n+m)
(2n−1)(2n+1) , vm

n =
√

(n−m)(n+m)
(2n−1)(2n+1) ,

sgnm =

{
1, m≥ 0,
−1, else,

σm =
√

2−δm .

Similar as with complex-valued SHs in [7], we extend
the 3N2 relations for the orders n≤N−1 by further 4N
equations for n = N, after eliminating the Y m±1

n+1 terms
contained within, as a contribution of this paper. The
resulting extended recurrences are

hm
n sgn−m

σm
[(1−δm)Y m

n x+Y−m
n y]− h−m+1

n
σm−1

Y m−1
n z =

− hm
n−1

σm−1
Y m−1

n−1 ,

(10)
h−m

n sgnm
σm

[Y m
n x− (1−δm)Y−m

n y]− (1−δm+1)hm+1
n

σm+1
Y m+1

n z =

− (1−δm+1)h
−m
n−1

σm+1
Y m+1

n−1 ,

(11)

and use the coefficient hm
n =

√
n−m
2n+1 . Similar as in [7],

the recurrences (7)–(9), (10)–(11) relate the steering
vectors YYY to the desired DOA parameters as diagonal
matrices YYY diag{xxx}, YYY diag{yyy}, YYY diag{zzz},

MMM 000 000
000 MMM 000
000 000 MMM
AAA BBB CCC


YYY 000 000

000 YYY 000
000 000 YYY

diag{xxx}
diag{yyy}
diag{zzz}

=


MMMx
MMMy
MMMz
DDD

YYY .

(12)

The binary mask MMM =
[
III{N2×N2} 000{N2×2N+1}

]
trun-

cates the SHs in YYY to the order N− 1 while MMM{x,y,z}
apply weights and shifts according to the x, y, or z re-
currences of (7)–(9). The matrices AAA, BBB, CCC, DDD contain
the 2N + 2N rows for n = N as defined by the recur-
rences of (10)–(11). Due to the index shift for m in the
z relation, the first extending recurrence only exists for
−n+1≤ m≤ n, while the second one only exists for
−n≤ m≤ n−1, as shown by the blue patches in the
two n = 3 rows of Fig. 1. The figure displays all the
recurrence coefficients utilized on the left-hand side for
Y m

n x, Y m
n y, Y m

n z and on the right-hand side for Y m
n in

grayscale, according to the matrix representation (12).

2.2 Identifying TTT from joint diagonalization

Following the observation model in Sec. 1.2 we
insert YYY = UUUTTT into the system of (12), cf. [7].

Fig. 1: Image showing the entries of the recurrence
coefficient matrices of the left and right side
of (12) for a maximum Ambisonic order N = 3.

Left-inversion numerically leaves a 3J× J right-hand
matrix whose J× J partitions ΨΨΨx, ΨΨΨy, ΨΨΨz relate
to a joint eigenvalue problem ΨΨΨx = TTT diag{xxx}TTT−1,
ΨΨΨy = TTT diag{yyy}TTT−1, ΨΨΨz = TTT diag{zzz}TTT−1 with the
DOA parameters as eigenvalues and TTT containing the
joint eigenvectors:

TTT diag{xxx}TTT−1

TTT diag{yyy}TTT−1

TTT diag{zzz}TTT−1

=


MMMUUU 000 000
000 MMMUUU 000
000 000 MMMUUU

AAAUUU BBBUUU CCCUUU


†

MMMxUUU
MMMyUUU
MMMzUUU
DDDUUU

=:

ΨΨΨx
ΨΨΨy
ΨΨΨz

 .
(13)

The superscript (·)† denotes the pseudoinverse. The
performance of EB-ESPRIT algorithms is highly in-
fluenced by the accuracy and robustness of the algo-
rithm that is employed to solve this simultaneous diag-
onalization problem. The evaluation below compares
the JAPAM-5 algorithm [13] to the ad-hoc method,
cf. Sec. 2.3, and to our proposed, simplified joint Schur
decomposition that is described in Sec. 2.4.

2.3 Best disjoint eigendecomposition (ad-hoc)

Previous publications found ad-hoc methods to produce
sufficiently accurate results [6][7]. In particular, the ad-
hoc method diagonalizes the three individual problems
ΨΨΨx, ΨΨΨy, ΨΨΨz disjointedly, and from the resulting three
eigenvector matrices TTT x, TTT y, TTT z, the one T̂TT is chosen
that is able to best diagonalize all three matrices jointly,
based on the least off-diagonal squares,

T̂TT = argmin
TTT

∑
µ∈{x,y,z}

∥∥zdiag(TTT−1
ΨΨΨµTTT )

∥∥2
F , (14)

AES 154th Convention, Espoo, Helsinki, Finland, 2023 May 13–15
Page 4 of 8



Zotter and Deppisch REVEB-ESPRIT

where zdiag zeroes the diagonal and ‖ · ‖2
F is

the squared Frobenius norm. The resulting ma-
trices contain the DOA parameters on their di-
agonals, xxx = diag{T̂TT−1

ΨΨΨxT̂TT}, yyy = diag{T̂TT−1
ΨΨΨyT̂TT},

zzz = diag{T̂TT−1
ΨΨΨzT̂TT}.

2.4 Joint Schur decomposition

The real-valued formulation permits to employ an ap-
proximate joint Schur decomposition (JSD) that only
uses orthogonal, real-valued Schur eigenvectors to
jointly reduce all three matrices ΨΨΨx, ΨΨΨy, ΨΨΨz to upper
triangular form, revealing the direction parameters as
eigenvalues on the diagonals. Oseledets et al. [16] pro-
posed a fast algorithm for a joint generalized Schur de-
composition (JGSD) involving left and right subspace
eigenvectors and successive deflation.

As listed in Alg. 1, we propose a non-generalized
JSD as a simplification of the JGSD. It involves a
single, both left and right subspace eigenvector vvv per
deflation. The objective of JSD({ΨΨΨx,ΨΨΨy,ΨΨΨz}) is to
find the eigenvalues associated with the joint eigen-
vectors of the REVEB-ESPRIT matrix set. The JSD
successively deflates the matrices that are processed
as {AAAk} by their first dimension eee1 = [1,0,0, . . . ]T af-
ter Householder-mapping the newly discovered joint
eigenvector vvv there. The eigenvalues to vvv constitute the
ith DOA vector θθθ i = [λ1,λ2,λ3]

T. A full succession
of deflations starts with the size i = J, and when i = 1
is reached, matrices are scalars and directly identify
the last DOA θθθ 1 = [AAA1,AAA1,AAA3]

T. Steps to form explicit
upper triangular matrices are skipped as only eigen-
values are needed. Until convergence or reaching an
iteration limit, the eigenvector estimate vvv for one de-
flation is initially guessed, then repeatedly refined by:
(i), a Rayleigh-quotient estimating the eigenvalues λk,
assuming vvv is a joint eigenvector, (ii), superimposed
shifted matrices BBBk = AAAk−λkIII squared that ought to
vanish when multiplied by a joint eigenvector, assum-
ing its eigenvalues are λk, and, (iii), a corresponding
inverse iteration to improve vvv.

3 Numerical evaluation study

We evaluate REVEB-ESPRIT using the ad-hoc diago-
nalization from Sec. 2.3, JAPAM-5 [13], and the pro-
posed JSD from Sec. 2.4, and compare them to the
complex-valued EVEB-ESPRIT algorithm using the

Algorithm 1 Joint Schur Decomposition for
REVEB-ESPRIT

1: procedure JSD({AAAk})
2: i = size(AAA1) . initial size counter i = J
3: while i > 1 do . deflate {AAAk} by j.eigenvec.
4: vvv = randn(i,1) . init. joint eigenvec. estim.
5: vvv = vvv/‖vvv‖ . L2-normalize it
6: repeat . iteratively refine vvv for all k
7: λk = vvvTAAAkvvv, ∀k . estimate eigenvals.
8: BBBk =AAAk−λk III, ∀k . shifted matrices
9: GGG = ∑k BBBT

k BBBk . sum of squares
10: vvvold = vvv, . store old estimate
11: vvv =GGG−1vvvold . re-estimate j.eigenvec.
12: vvv = vvv/‖vvv‖ . L2-normalize it
13: until 1−|vvvTvvvold|< tol . vvv converged?
14: store {λk} . ith eigenvalue set
15: qqq = sign(v1)eee1 +vvv . Householder v. of vvv
16: QQQ = III−2 qqqqqqT

‖qqq‖2 . Householder reflection
17: AAAk =QQQ[2:end,:]AAAkQQQ[:,2:end], ∀k . defl. by vvv
18: i- - . decrease size counter
19: end while
20: store {λk} ≡ {AAAk} . eigenval. set for i = 1
21: end procedure

ad-hoc method in a plane-wave, free-field scenario fol-
lowing the signal model in (3). We use unit-variance
white-noise signals sss(t) and adjust the variance of the
additive white Gaussian noise ννν(t) to modify the signal-
to-noise ratio (SNR). The J test directions {θ̂̂θ̂θ j} are
drawn randomly from a 48-point t-design [23]. Despite
ad-hoc methods only decompose the disjoint problems
ΨΨΨx,ΨΨΨy,ΨΨΨz separately, they work well under realistic
conditions [6]. Under rigorous conditions, only the
joint methods can resolve, for example, 3 distinct di-
rections with x1 = x2, y2 = y3, z1 = z3, because al-
gebraic multiplicity leaves an undetermined degree
of freedom to mix the corresponding eigenvectors in
the x,y,z sub-problems. In the respective 2 dimen-
sions of the example with algebraic multiplicity, ad-
hoc methods will yield a TTT x that does not diagonalize
ΨΨΨy, ΨΨΨz, a TTT y that does not diagonalize ΨΨΨx, ΨΨΨz, and
a TTT z that does not diagonalize ΨΨΨx, ΨΨΨy. For the com-
parison to become realistic, normally-distributed noise
of 2◦ variance is added to every set of test directions
to avoid such perfectly-matching pairs in x,y,z. The
maximum Ambisonic order is kept constant at N = 3
in all tests. For every combination of SNR and number
of sources J, the DOA estimation is repeatedly instanti-
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ated K = 400 times with source directions, source sig-
nals, and noise generated randomly. The algorithmic
performance is evaluated using the root-mean-square

error RMSE =

√
∑

K
k=1 ∑

J
j=1

∣∣∣ε(k)
θ , j

∣∣∣/(KJ) of the great-

circle distance ε
(k)
θ ,l = arccos(θθθ (k)T

j θ̂θθ
(k)
j ) between the

estimated direction θθθ
(k)
j and the true direction θ̂θθ

(k)
j . For

every instance k, the estimated source directions are it-
eratively assigned to the true source directions with the
smallest great-circle distance before evaluating RMSE.

The JSD and JAPAM-5 algorithms both used a toler-
ance tol = 10−7 and were limited to 100 iterations.

3.1 Results

Fig. 2a shows the obtained RMSEs for the different
algorithms and J = {2,6,13} simultaneous source di-
rections. The proposed real-valued algorithm using
the JSD consistently yields the lowest RMSE in all
performed scenarios. In the case of J = 2 simultane-
ous DOAs, the real-valued ad-hoc algorithm performs
equally well, while the complex-valued ad-hoc algo-
rithm and JAPAM-5 show slightly increased RMSEs.
For J = 6 sources and low SNRs, the proposed algo-
rithm again achieves the lowest RMSEs. At an SNR of
10 dB it achieves an RMSE that, with 3.4◦, is about 0.8◦

smaller than the next best competitor’s RMSE. At high
SNRs exceeding 30 dB, all algorithms perform simi-
larly well in this scenario. In the test case with J = 13
simultaneously estimated directions, the proposed al-
gorithm outperforms the competitors at all SNRs. At
an SNR of 10 dB, it achieves an RMSE of around 27◦,
which is 3.9◦ lower than the second best algorithm’s
RMSE, and at 50 dB an RMSE of 2.9◦, which is about
0.8◦ lower than the next closest RMSE. Interestingly,
the complex-valued ad-hoc algorithm achieves lower
RMSEs than its real-valued counterpart in this case,
which can only be explained by the advantages of its
algebraic coupling regarding the x and y related sub-
problems to x± iy. As the JAPAM-5 algorithm did not
converge for J = 13 sources, there are no corresponding
results displayed in this test case.

Tab. 1 shows mean execution times in ms of the al-
gorithms for J = {2,6,13} sources, averaged over the
K = 400 randomly-instantiated repetitions and over the
5 SNR steps between 10 and 50 dB for which there is
only moderate variation. In the test cases with J = 2
and J = 6 simultaneous source directions, the proposed

(a) J = 2

(b) J = 6

(c) J = 13

Fig. 2: RMSEs produced by the complex and real-
valued EVEB-ESPRIT algorithms using differ-
ent eigenvalue-revealing decompositions for a
varying number of sources J. Note the different
y-axis in (c).
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J = 2 J = 6 J = 13

real, ad-hoc 0.985 0.760 1.26
complex, ad-hoc 1.12 1.05 2.26
real, JSD 0.579 0.631 1.70
real, JAPAM 1.72 7.41 N/A

Table 1: Mean execution times in ms of the different
algorithms for J = {2,6,13} simultaneous
DOAs, averaged over K = 400 random ini-
tializations and 5 different SNRs between 10
and 50 dB.

algorithm yields the fastest execution times. The ex-
ecution times of the ad-hoc methods are comparable
to the proposed method, and the execution time of the
JAPAM-5 algorithm is about 3 times longer than the
one of the proposed algorithm with J = 2 and about
12 times longer with J = 13 simultaneous DOAs. In the
test case with J = 13 source directions, the real-valued
ad-hoc algorithm executes fastest with an average of
1.26 ms, while the real-valued JSD algorithm achieves
an average execution time of 1.70 ms and the complex-
valued ad-hoc algorithm executes slowest with an av-
erage of 2.26 ms. As the JAPAM-5 algorithm did not
converge in this test case, no results are displayed. The
simulations were carried out on a MacBook Pro with a
1.4 GHz Quad-Core Intel Core i5 processor and 8 GB
RAM running MATLAB 2022b.

4 Conclusion

We introduced a fully real-valued formulation of the
extended vector-based EB-ESPRIT (REVEB-ESPRIT)
for multiple direction-of-arrival estimations from Am-
bisonic signals. This improves the compliance with
Ambisonic format definitions that use real-valued spher-
ical harmonics, requiring normalization to N3D, here,
and it enables more efficient ways to retrieve the DOAs
in the form of real eigenvalues of the inherent joint
eigenvector problem. As solution method we proposed
the simplification of an existing joint generalized Schur
decomposition algorithm to a joint Schur decomposi-
tion (JSD) algorithm that is highly accurate and robust.
Its real-valued implementation is more efficient than
the complex-valued ad-hoc method and more efficient
than the real-valued algorithm using the JAPAM-5 al-
gorithm. For low numbers of simultaneous source di-
rections, it is also more efficient than the real-valued

ad-hoc method. The proposed REVEB-ESPRIT al-
gorithm with joint-Schur diagonalization consistently
yields the highest estimation accuracy in all tested sce-
narios. We provide an open MATLAB implementa-
tion of our simulation study2, its recurrences3, and the
JSD/JGSD algorithms4 including documentation.
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