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ABSTRACT

Recent speech enhancement work, which makes use of neural networks trained with a loss derived in part using
an adversarial metric prediction network, has shown to be very effective. However, by limiting the data used to
train this metric prediction network to only the clean reference and the output of the speech enhancement network,
only a limited range of the metric is learnt. Additionally, such speech enhancement systems are limited because
they typically operate solely over magnitude spectrogram representations so they do not encode phase information.
In this work, recent developments for phase-aware speech enhancement in such an adversarial framework are
expanded in two ways to enable the metric prediction network to learn a full range of metric scores. Firstly, the
metric predictor is also exposed to unenhanced ’noisy’ data during training. Furthermore, an additional network is
introduced and trained alongside which attempts to produce outputs with a fixed ’lower’ target metric score, and
expose the metric predictor to these ’de-enhanced’ outputs. It is found that performance increases versus a baseline
system utilising a magnitude spectrogram speech enhancement network.

1 Introduction

Speech enhancement (SE) has been an active research
topic for some decades now, given its myriad appli-
cations in human-to-human (h2h) communication (in
video or voice calls) [1, 2, 3], as well as in human-to-
machine (h2m) communication in home, car, industry,
mobile devices or smart assistants [4, 5]. The use of
neural network systems to perform speech enhance-
ment has shown great success in recent years [6, 7]. In
the training of neural networks to accomplish speech
enhancement selection of an objective function that
is appropriate for this task is important [? 8]. Direct
comparison between ’clean’ audio and the output of a
neural network given an artificially corrupted version
of that audio has been found to be uncorrelated with

objective measures (metrics) of intelligibility, quality
and performance for both forms of speech commu-
nication [9, 10]. Recent publications [11, 12] have
proposed the use of an objective function that better
represents one or more of these objective measures.
However, these objective functions must be carefully
designed as many signal assessment measures have
calculations that are non-differentiable. A commonly
used signal assessment measure in such systems is the
Perceptual Evaluation of Speech Quality (PESQ) [13]
score, which has been shown to correlate with human
perception [12, 14]. Many systems [15, 16, 17, 18]
circumvent the limitation of non-differentiable losses
by training an additional network alongside the speech
enhancement network to mimic the behaviour of the
objective metric. This network, the discriminator, is
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then used to formulate a loss for the training of the
speech enhancement network, the generator. The two
networks are trained in a generative adversarial net-
work (GAN) style. In such systems, the data used to
train the discriminator network is of particular impor-
tance, as the generator network’s training is entirely
reliant upon it.
A limitation of the above is that the speech enhance-
ment network is trained solely using the metric estima-
tion network in all cases. In [19], two additional losses
derived from a distance between a reference signal and
the model output in the time and complex frequency
domains respectively are introduced. Also in [19], a
more complex speech enhancement network which is
able to directly encode phase information is proposed.
This work further uses a phase-aware speech enhance-
ment network structure inspired by [19], but the whole
system is trained as described in [16], including the use
of a tertiary ’de-generator’ network, as first proposed
in [18].
The remainder of this paper is structured as follows:
in Section 2 the proposed system and baselines are
detailed including their model structures, loss func-
tions and training setups. The experimental setup is
described in Section 3, performance of the proposed
method is analysed in Section 4 and Section 5 con-
cludes the paper.

2 PAMGAN+/-

2.1 Signal Model and Feature Computation (FC)

Single channel speech enhancement can be defined as
the recovery of the clean speech signal s[n] from the
noisy mixture

x[n] = s[n]+ v[n] (1)

corrupted by a disturbance v[n] for discrete time index
n (omitted in the following to increase readability),
i.e. estimating a clean speech signal ŝ from x.

Complex tempo-spectral features are calculated as
in [19]: spectrogram matrices P ∈ CLDFT×LP are cal-
culated using the short time Fourier transform (STFT)
of length LDFT for each LP frames of a time domain
signal p, which are compressed by the power law com-
pression [20] to obtain feature matrices P f = Pc. From
this, magnitude, phase, real and imaginary components
are calculated, denoted as PM = |P f |, PP =∠P f , PRe =
Re{P f }, and PIm = Im{P f }, respectively. Please note

that p and P are considered as placeholders for the sig-
nals, i.e. p ∈ {x,s, ŝ,y} and P(·) ∈ {X(·),S(·), Ŝ(·),Y(·)},
respectively [18, 16]. Note also that the magnitude
representation PM, by definition, does not encode any
phase information.

2.2 Framework Overview

In this work, the enhancement generator G is inspired
by the model proposed in [19], including two additional
loss terms when compared to the MetricGAN+ [16]
baseline. This is trained alongside the discriminator
D in the manner proposed in MetricGAN+ [16] and a
’de-generator’ N as introduced in MetricGAN+/- [18].
We call this proposed system PAMGAN+/- (Phase-
Aware-Metric-GAN) since it extends the MetricGAN+/-
framework by phase information. Table 1 analyses dif-
ferences of related frameworks which will be detailed
in the following.

2.3 MetricGAN+ Baseline

The MetricGAN+ baseline framework [16], extending
ideas from [15], consists of two networks, (i) a speech
enhancement model, the generator G , which aims to
remove the undesired signal parts v from the noisy
signal x in Eq. 1 and (ii) a metric estimation network,
the discriminator D , which provides an estimate Q̂′(·)
for the normalised performance metric Q′(·), providing
a target to optimise the signal enhancement.

2.3.1 Loss of Discriminator D

In this work, a normalised version of the time domain
intrusive speech quality metric PESQ [13] is used as
Q′(·). PESQ is defined between 1 and 4.5, higher being
better, and frequently used to assess speech enhance-
ment [21]. The discriminator D is trained to reproduce
the normalised target metric Q′(·) by minimising the
distance from its output Q̂′(·) and the ’true’ normalised
metric score Q′(·) used as its objective function, i.e. the
discriminator loss function is

LD ,MG+ = E{(D(SM,SM)−1)2

+(D(ŜM,SM)−Q′(ŝ,s))2

+(D(XM,SM)−Q′(x,s))2} (2)

where each term represents D’s ability to reproduce
the Q′(·) score of time domain signals s, ŝ, and x, re-
spectively. Figure 1 visualises the discriminator struc-
ture. The value of Q′(s,s), i.e. comparing the reference

AES 154th Convention, Espoo, Helsinki, Finland, 2023 May 13–15
Page 2 of 9



Close, Hain, Goetze PAMGAN+/-

Table 1: Properties of different MetricGAN (MG) derived frameworks.

Generator G Discriminator D De-generator N
System Features, Eq. 2.1 Structure, Section 2.6.1 LG , Section 2.4.1 Input, Section 2.3.1 Historical, Section 2.7.1 Component, Section 2.5
MG [15] XM BLSTM Eq. 3 s, ŝ x x
MG+ [16] XM BLSTM Eq. 3 s, ŝ,x X x
MG+/- [18] XM BLSTM Eq. 3 s, ŝ,x,y X X
PAMGAN+/- (prop.) XM,XRe,XIm Conformer Eq. 8 s, ŝ,x,y X X

signal s to itself, is always 1 (cf. first term in Eq. 2,
while the values of Q′(x,s), Q′(ŝ,s), etc. usually vary
depending on corpus and generator training success, re-
spectively, typically from 0.3 to 1 for common corpora,
higher being better.

Metric

FC

FC
D

p
x

s
ŝ

y

Normalization

Q′(p,s)

Q(p,s)

Q̂′(Pm,Sm)

Pm

Sm

Fig. 1: Training of discriminator D .

2.3.2 Loss of MetricGAN Generator G

The metric score of the enhanced output of G , ŝ as
predicted by inference of D is used to train G based on
the loss

LGMG = E{(D(Ŝm,Sm)−1)2}, (3)

where 1 represents a ’perfect’ score in the normalised
metric Q′(·).

2.4 Phase-Aware Enhancement Losses

2.4.1 Phase-Aware Generator G

Inspired by [19], two additional losses can be used
additionally to Eq. 3 to train the generator G . These
losses are intended to train the generator structure to
fully utilise the phase information encoded in its inputs.
Firstly a time domain loss [22]

LGTime = E{||s− ŝ||1} (4)

is minimised which directly compares the enhanced
time domain signal ŝ with the clean reference signal
s. Secondly, a time-frequency (TF) domain loss LGT F

[20] is considered, which makes explicit use of the
component outputs of the signal enhancement network
G , i.e. Ŝm, ŜIm and ŜRe. For this, the distance between
the enhanced and the reference magnitude

LGM = E{||SM− ŜM||2}, (5)

and the complex (real and imaginary) components

LGRI = E{||SRe− ŜRe||2}+E{||SIm− ŜIm||2} (6)

are computed. The two loss terms in Eq. 5 and Eq. 6
are finally combined using a weighing hyperparameter
α to result in

LGT F = α LGM +(1−α)LGRI . (7)

The final loss for G is then given as in [19]

LG = γ1 LGGAN + γ2 LGTime + γ3 LGTF (8)

where γ1, γ2, and γ3 are hyperparameter weights to
control the influence of each loss term. The model
structure has three component outputs, a magnitude
mask MG , a real and imaginary component, Ŝ′Re and
Ŝ′Im, respectively. The magnitude mask MG is multi-
plied with the noisy signal magnitude XM to produce
the enhanced signal estimate ŜM. Then, the combina-
tion of the enhanced magnitude ŜM with the original
noisy phase XP is added with the other two outputs Ŝ′Re
and Ŝ′Im as follows:

ŜRe = ŜM cos(XP)+ Ŝ′Re (9a)
ŜIm = ŜM sin(XP)+ Ŝ′Im (9b)

The generator, thus, combined masking-based and
mapping-based signal enhancement. The power law
compression is then inverted and an inverse short time
Fourier transform (ISTFT) is taken to obtain ŝ in the
Inv-FC block as visualised in Figure 2 which visualises
the generator training.

2.5 Degenerator Extension N

Based on findings from previous work [18], adding
an ’de-generator’ network N to the PAMGAN frame-
work as depicted in Figure 2 is proposed to generate
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Fig. 2: Input and output of PAMGAN+/- G , showing
inference of D and computation of ŝ.

outputs with a target score Q′(·) which is lower than
1, i.e. which have lower quality. These outputs, de-
noted as y, are then used to augment the training of the
discriminator D by extending its loss from Eq. 2:

LD ,PAMGAN+/− = LD ,MG+

+E
{
(D(Ym,Sm)−Q′(y,s))2} (10)

Figure 3 shows the input and training to the de-
generator network N , where inference of D is used to
train the network to produce outputs with Q′(·) scores
of w. The proposed hyperparameter w orresponds to
the normalised ’lowered’ target metric Q′(·) that N is
being trained to output audio with. The loss of N is
given similarly to Eq. 3:

LN = E{(D(Ym,Sm)−w)2}, 0 < w < 1 (11)

N

XM

XP

s SM

D

FC

FC

Re-Synth
(OLA)

ŷ
ŶM

D
(
ŶM,SM

)|YM|

Fig. 3: Feature Computation (FC) and training of
PAMGAN+/- degenerator network N via in-
ference of D .

Note that we also experiment with having the input to
N be the clean reference magnitude Sm and train it
using a modified version of Eq. 4:

LNClean = E{D(S̄m,Sm)−w)2}+E{||x− s̄||1} (12)

where S̄m is the magnitude of the de-enhanced time
domain signal s̄. The time loss is used to encourage N
to recreate the distortion caused by the noisy v in x.

2.6 Network Structures

2.6.1 Generator Network Structure

The generator G is inspired by that proposed in [19] and
has a loss function Eq. 8 as described in Section 2.4.1.
It takes noisy signal parts Xm, XRe, XIm as input. The
network consists of four main components, an encoder,
a Conformer [23, 24] based bottleneck and two decoder
structures, one producing a magnitude mask which
is applied to Xm to produce the enhanced magnitude
Ŝm and the other the complex and real components
Ŝ′Re and Ŝ′Im. The encoder structure consists of two
convolutional layers with a dilated DenseNet [25] in
between.
Each block of the bottleneck structure consists of two
sequential Conformer blocks, with residual connections
and reshape operations to allow the first Conformer to
operate over the time dimension and the second over
the frequency. The Conformer blocks are designed
to capture long-term dependency in the spectogram
inputs [26].
The output of the bottleneck is fed in parallel to two
decoders, which use a dilated DenseNet followed by
two convolutional layers. The mask decoder and the
complex decoder are identical with the exception of
the final convolutional layer. In the mask decoder the
final convolutional layer outputs a single layer (the
magnitude mask) with a ReLU activation, while the
complex decoder outputs two representations (the real
Ŝ′Re and imaginary Ŝ′Im) with its final layer having no
activation.

2.6.2 Discriminator Network Structure

The discriminator network D takes the magnitude of
the clean reference signal Sm as input, stacked with
that of the signal being assessed (Sm, Xm, Ŝm or Ym)
and returns an estimation of that signal’s Q′(.) score. It
consists of four convolutional layers with 32, 64, 128,
and 256 filters, respectively, each with an instance nor-
malisation and LeakyReLU [27] activation. These are
followed by a global average pooling layer, and then
three feed-forward layers each with a LeakyReLU acti-
vation aside from the final layer which has a sigmoid
activation. These feed-forward layers have 50, 10, and
1 output neurons, respectively.
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2.6.3 Degenerator Network Structure

The degenerator network N takes as input the noisy
magnitude XM and returns a magnitude mask which is
multiplied with XM to produce a degraded magnitude
YM. It follows the structure detailed in [18], consisting
of a Bidirectional Long Short-Term Memory (BLSTM)
[28] with two LSTM layers with 200 neurons each.
This is followed by two fully connected layers, the
first with 300 output neurons and a LeakyReLU acti-
vation, and the second with 257 output neurons and a
’Learnable’ Sigmoid activation function. The degraded
waveform y is computed using the overlap-add resyn-
thesis method, using the original noisy phase XP.

2.7 MetricGAN+ Training

2.7.1 Historical Training

First proposed in [16], this is a technique where D is
trained using a ‘replay buffer’ where saved outputs of
the generator G from past epochs. The size of this
replay buffer is decided by a ‘history_portion’
hyper-parameter H, which corresponds to the replay
buffer growing by a fixed percentage of the audio seg-
ments observed each epoch. This is done to prevent
D from ‘forgetting’ too much about the behaviour of
Q′(·) on previously enhanced speech.

2.7.2 Training Cycle

Each training epoch consists of four steps, the first
three representing the training of D and the final one
the training of G . At the start of each epoch, I audio
segments are randomly picked from the training set.
Firstly, D is trained as given in Eq. 2 on these I random
audio segments. These audio segments are 2 seconds
in length due to technical constraints, but the system
uses the longer audio at validation and test. Next, D is
trained using the historical set as described above. Then
the first step is repeated with D again being trained
using the I random samples. Finally, G is trained using
Eq. 8. G is trained also using the I samples.
While training the discriminator D , the generator G
is ‘frozen’, i.e. its parameters are not updated, and
the opposite is true during training the generator G .
Note that samples are added to the replay buffer during
the first step of D’s training, meaning that 20% of
the current epoch’s samples are always present in the
replay buffer. As D is trained before G , the ŝ in Eq. 2
actually represents the output of the previous epoch’s
generator G .

2.8 MetricGAN+/- and PAMGAN+/- Training

Due to the introduction of N , some changes are made
to the training described above. Firstly, outputs of N ,
i.e. y, are also used to populate the replay buffer, thus
doubling its size as each enhanced sample with now
have a corresponding ‘de-enhanced’ version. Addition-
ally, the training of N occurs immediately before that
of G in each epoch.

3 Experiments

3.1 Dataset

The dataset used in the following experiments is
VoiceBank-DEMAND [29], a popular and commonly
used dataset for single-channel speech enhancement.
Its training set consists of 11572 clean and noisy speech
audio file pairs (s,x), mixed at four different signal-to-
noise ratios (SNRs) of {0, 5, 10, 15} dB. Eight noise
files are sourced from the DEMAND [30] noise dataset
- a cafeteria, a car interior, a kitchen, a meeting, a metro
station, a restaurant, a train station and heavy traffic
noise. Two others, a babble noise and a speech-shaped
noise, were also used. The utterances in the set vary in
length from around 2 seconds to 10, but are segmented
into 2 second blocks for training. The training set con-
tains speech from 28 different speakers (14 male, 14
female), with English or Scottish accents. The testset
containing 824 utterances is mixed at SNRs of 2.5, 7.5,
12.5 and 17.5 dB, with five different noises which do
not appear in the training set from the DEMAND cor-
pus (bus, cafe, office, public square and living room)
and contains speech from two (one male, one female)
speakers who do not appear in the training set.

3.2 Experiment Setup

The aim of the following experiments is to compare
the performance of the baseline systems MetricGAN+,
which is available as part of the SpeechBrain [31]
toolkit, and the CMGAN with the proposed system, de-
noted as ConformerMetricGAN+/-. The framework is
trained for 300 epochs with a sample size t of 100 and a
batch size of 1. The historical training hyperparameter
H is set to 0.2, such that the historical set grows by 40
entries each epoch (20 enhanced, 20, ‘de-enhanced’).
The Adam optimiser [32] with a learning rate of 0.0005
is used for all three networks G , D and N . Two TS-
Conformer blocks are used in G . The STFT has a DFT
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length of LDFT = 400, a window length of 25 ms at
sampling frequency of fs = 16 kHz and a hop (overlap)
length of 6.25 ms, resulting in a 75% overlap between
frames.The feature compression factor is c = 0.3 [20].
The hyperparameter α in the calcualtion of LGT F is set
to 0.7, while γ1,γ2,γ3 in LG are all set to 1. The value
of w in LN is set to 0.45 (corresponding to a PESQ
score of 2.5).
Two proposed models are trained, one of which has N
trained using Eq. 11, denoted ‘N noisy’ in the follow-
ing and the other using Eq. 12, denoted as ‘N clean’.
In addition to the proposed system PAMGAN+/-, mod-
els using MetricGAN+[16] and MetricGAN+/-[18]
are also trained as baselines. The MetricGAN+ and
MetricGAN+/- baseline models are trained for the
same number of epochs (300 rather than 600 in their
originally published versions) as the proposed sys-
tem to ensure comparability. Models are evaluated
using PESQ [13], short-time objective intelligibility
(STOI) [33] and the Composite [34] measure. STOI
is a measure of speech intelligibility valued between
0 and 100%, while the three Composite scores Csig,
Cbak and Covl are valued between 0 and 5 and repre-
sent the speech signal quality, the background noise
reduction and the overall quality of the speech, respec-
tively.

4 Results

Table 2: Performance of PAMGAN+/- on VoiceBank-
DEMAND test set

Model Name PESQ STOI Csig Cbak Covl
Noisy 1.97 92.0 3.35 2.44 2.63
MetricGAN+ [16] 2.93 93.0 3.99 2.81 3.44
MetricGAN+/- [18] 3.05 92.0 3.95 2.87 3.49
PAMGAN+/- (N noisy) 2.97 93.1 4.09 2.89 3.53
PAMGAN+/- (N clean) 3.04 93.4 4.16 2.93 3.61

Table 2 shows the results of the PAMGAN+/- models
trained on the VoiceBank-DEMAND test set. Both
proposed models outperform the baseline systems in
terms of STOI and the Composite measure and perform
similarly in terms of PESQ. This slight decrease in
PESQ score can perhaps be explained by the difference
in G ’s loss function; in MetricGAN+/-, G is trained
using Eq. 3, i.e. solely to maximise the PESQ score,
while in the proposed PAMGAN+/- Eq. 3 is but one
component of Eq. 8 used to train G . The model where
N is trained using Eq. 12, ‘N clean’, outperforms
‘N noisy’ in all tests. This is interesting, given that a

similar experiment in [18] found the opposite; however
in that case all N were trained only via inference of D
as in Eq. 11. This indicates that the additional loss term
which represents the distance between N ’s output and
the noisy signal x helps N to produce outputs which
are more useful for the training of D .

4.1 Spectrogram Analysis

Fig. 4: Spectrogram plots of p257_008.wav from
VoiceBank-DEMAND testset s, x, ŝ outputs of
MetricGAN+/-, PAMGAN+/- with x as input
to N and PAMGAN+/- with s as input to N

Figure 4 show spectrogram plots of clean signal s,
noisy signal x and the enhanced signal ŝ for the base-
line system MetricGAN+/- and for the two proposed
PAMGAN+/- models. From these, it can be observed
that an artefact in the low-frequency region of the
MetricGAN+/- spectrogram is not present in either
PAMGAN+/- spectrogram. This indicates that the
phase-aware Generator structure is more robust to such
artefacts compared to the baseline system.

5 Conclusion

In this work, an extension to the MetricGAN+/- frame-
work incorporating a phase-aware, Conformer based
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network structure leads to increased performance and
reduced artefacts while utilising more input features
as well as a more nuanced loss function for the speech
enhancement network G .
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