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ABSTRACT

This work aims at deriving a minimum required resolution for optimization of head-related transfer functions
(HRTFs). It builds on existing metrics, used to numerically evaluate HRTF differences, as well as on a model
estimating just noticeable differences (JNDs) for uni-lateral variation of HRTFs. Integrating this model, as well
as descriptors for both monaural and binaural cue differences, a three-alternative forced choice experiment is
set up to investigate JNDs for bi-lateral variation of HRTF sets. Rather than introducing manual changes to the
spectra, an exchange between magnitude spectra of generic HRTF sets is employed, while controlling for multiple
conditions related to the descriptors. The probability of distinguishing between the stimulus pairs is linearly
modeled using different subsets of numerical descriptors. A model integrating two monaural descriptors, ‘issd’ and
‘mfcd’, achieves the best performance, compared to the rest. It shows a tendency for slight improvement when
combined with an estimate of the detectability of changes in interaural cross-correlation.

1 Introduction

As virtual audio applications increasingly offer indi-
vidualized spatial audio solutions, the aim for person-
alized head-related transfer functions (HRTF) is be-
coming more widespread. Here, a variety of different
HRTF acquisition methods, ranging from acoustic mea-
surements to numerical simulations and less complex
approximation methods, poses more or less feasible
options, depending on the available facilities and hard-
ware. As can be expected, these methods possess vary-
ing degrees of detail loss, manifesting as spatial and/or
spectral cue distortion.

In optimizing these methods, the goal is to improve
quality, i.e., to increase the similarity to a target HRTF,
while minimizing measurement or computational effort.

This poses the question at what point further attempts of
optimization are no longer perceivable and, accordingly,
no longer of benefit.

Numerous studies have attempted to use numerical
descriptors of the error between a given and a target
spectrum (e.g., [1, 2]), yet mostly without drawing a
direct connection between perception and the used set
of descriptors.

A multitude of models has been introduced, relating
numerical differences to specific perceptual properties,
such as localization (e.g., [3]) or spectral coloration [4].
These models are feasible for use with arbitrary HRTF
spectra and are not restricted to describing the effect
of manually introduced HRTF differences (so-called
“degradation”). However, the latter restriction is often
given for studies on just noticeable differences (JNDs),
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which typically address the detectability of changes
as described by some degradation parameter, e.g. a
smoothing factor [5]. This dependency is limiting, as
knowledge from such JND studies can hardly be ap-
plied to arbitrary HRTF differences - at least not in
a direct manner. Furthermore, the above-mentioned
models for spectral evaluation typically address supra-
threshold differences, relating them to consciously per-
ceived properties of the auditory stimulus. Little re-
search has been conducted on modeling near-threshold
HRTF differences for arbitrary (i.e., not artificially mod-
ified) data.

The current work follows up on a JND model for uni-
lateral HRTF differences, previously developed by the
authors [6]. Here, the model is expanded, introducing
near-threshold bi-lateral HRTF variation. This impli-
cates monaural cue changes at both ears as well as
binaural cue distortions. A selection of suitable de-
scriptors for these distortions is introduced in Section
2. Different degrees of variation of the descriptors
are incorporated into a listening experiment, as de-
scribed in Section 3. The acquired perceptual data are
subsequently presented in Section 4, where the rela-
tion between the detectability of differences and the
given descriptor values is examined. A simplified lin-
ear model is derived based on these findings. Model
performance and applicability are finally discussed in
Section 5, followed by a short summary of findings.

2 Materials

Bilateral changes in HRTFs can be quantified using
monaural descriptors (assessing the changes in left and
right ear spectra individually) and binaural descriptors
(assessing changes in binaural cue information). A
selection from both categories is used in this work.

As an indicator for detectability of uni-lateral changes,
a JND model [6] is used, that is based on the following
three metrics:

The Mean Squared Error (mse) metric performs a bin-
based calculation of the mean squared difference be-
tween two HRTF spectra, both belonging to the same
incidence direction. This corresponds to a normalized
integration over the difference spectrum. The Inter-
Subject Spectral Difference (issd) [7] calculates the
variance over the difference spectrum, thus being sen-
sitive to changes in spectral shape, rather than in gain.
Finally, the Mel-Frequency Cepstral Distortion (mfcd)

[8] operates on the basis of cepstral coefficients of 24
mel bands. Using a mean squared error calculation, it
quantifies the difference in spectral energy within these
spectral bands.

The above-mentioned linear model exploits the com-
mon variance of the three metrics by using linear co-
efficients derived from Principal Component Analysis
(PCA). The output of the model is an estimated prob-
ability of detecting a uni-lateral change in an HRTF
spectrum, with a hard cut-off introduced at pmon = 0%
and 100 %. A value of pmon = 0% corresponds to no
detection (i.e., guessing in an experimental setting) and
50 % to the JND.

In addition to this model output, the three monaural
input metrics are included as individual descriptors.
Three binaural descriptors are furthermore considered.
The first two describe changes in interaural level differ-
ence (ILD): Similarly to the mse metric, the mseILD is
introduced, calculating the mean squared error between
the two ILD spectra (i.e., between the two difference
spectra, on their part calculated from the left and right
ear HRTFs). Analogously, the issdILD expresses the
variance of the difference spectrum between the two
ILD spectra.

A third metric, pIACC, predicts the detectability of a
change in interaural cross-correlation (IACC), based
on the findings of Pollack and Trittipoe [9]. Their work
comprised a two-alternative forced choice (2-AFC)
experiment, from the results of which they derived
just noticeable differences of interaural noise cross-
correlation, in relation to a reference IACC value. With
a guessing rate of γ = 50% and assuming a lapse rate
of λ = 1%, their percentage of correct responses p2AFC
is transformed as

pIACC =
p2AFC− γ

(1−λ − γ)
, (1)

yielding a simplified paradigm-independent predictor
for IACC transitions. Figure 1 depicts its dependence
on both the amount of change and the actual (refer-
ence) IACC present in the signals. The values are
reconstructed and interpolated from data in [9], Fig. 4,
and transformed using eq. (1). The line corresponding
to pIACC = 50% is in the following referred to as the
JND of IACC.
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Fig. 1: Probabilities of detection of changes in interau-
ral cross-correlation (IACC), as a function of
the initial (reference) IACC between the two ear
signals. The solid line indicates the JND (50%
threshold). Dashed lines refer to the safety mar-
gins for stimulus selection above and below
said threshold, see Section 3.1. (Information is
based on data from [9], Fig.4.)

3 Experimental Design

The goal of the experiment is to provide perceptual
data, to be used for modeling a binaural JND. This
JND can be considered a minimum required resolution
for HRTF similarity.

A three-alternative forced choice (3-AFC) paradigm,
with the task of distinguishing one target from two ref-
erence signals, is chosen. A triple pink noise pulse,
convolved with two pairs of HRTFs (in free-field), is
presented for comparison. Each stimulus pair is re-
peated twice, with the total number of trials split into
six experimental blocks. The order of blocks and of
the trials within is latin square balanced. A mandatory
break after the third block is introduced to minimize
effects of exhaustion.

Playback is done using headphones (Sennheiser
HD650) in an acoustically optimized hearing booth.
The presentation level is calibrated to a mean of 60 dB
SPL, using a Head Acoustics HMS III artificial head
with IEC 711 ear simulator and a Nexus Type 2690-
A conditioning amplifier. An individual headphone
equalization [10] ensures that all participants receive
approximately the same signal at the ear canal entrance.
While the relative differences between the presented

stimuli would still be present without this equalization,
the detectability of differences would be affected by the
absolute level in the respective frequency bands. E.g.,
a spectral notch caused by individual headphone-pinna
interactions may lie below the audibility threshold, ren-
dering superimposed differences in that frequency band
undetectable, and thus hindering the comparability be-
tween the performance of different participants.

3.1 Conditions

The experiment is intended to be representative for
arbitrary (or at least a wide variety of) data. To enable
proper modeling using the introduced descriptors, it
should further cover a large range of differences in both
monaural and binaural cue information. The following
features are therefore considered in the selection of
stimuli.

3.1.1 HRTF databases and transitions

A total of three HRTF databases is integrated into
the study. The first database comprises measured
datasets from the ITA HRTF database [11]. The sec-
ond database (idealPCA) is a reconstruction of these
HRTF spectra using a linear combination of 23 Prin-
cipal Components (in the spectral domain), weighted
using the ideal score output of the PCA [12]. Finally,
the third database (anthroPCA) is an approximation
of the second. Instead of the ideal weighting score,
however, an approximation of the PC score is attempted
using multi-linear regression and six anthropometric
dimensions of the respective database members [13].

The three databases provide different degrees of spec-
tral detail loss for the HRTFs of the database mem-
bers. This allows, on the one hand, for intra-
individual transitions, i.e., a direct contrasting be-
tween the different levels of detail. On the other hand,
inter-individual transitions represent the effect of
non-individual cues, as HRTFs of different database
members are compared. Combining the three databases
and two transition cases yields a factor with six levels.

3.1.2 Hemispheres

In order to rule out directional biases (e.g., right- [14]
or left-side [15] advantage effects), ipsi- and contra-
lateral incidence directions are equally covered in the
choice of HRTF spectra, which results in another factor
with two levels.
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3.1.3 Degrees of predicted monaural
detectability

The monaural prediction model, as briefly outlined in
Section 2, is used as an indicator for detectability of
separate ear variations. Different combinations of left
and right ear values are meant to allow for cases where
the audible difference at one ear dominates perception,
as well as cases where both ears have an equally in-
discriminate or pronounced error. Three ranges are
defined as follows:

Low: pmon < 30 %
Medium: 30 % ≤ pmon < 50 %
High: 50 % ≤ pmon < 75 %

Evidently, these ranges are not symmetrical around
the 50 % threshold. For modeling purposes, the goal
is to gain perceptual data points centered around the
50 % threshold for the bi-lateral variation experiment.
Therefore, since it is expected that the presence of a
variation at the second ear would increase the proba-
bility of detection, a bias towards lower detectability is
introduced to the uni-lateral value ranges. This choice
of ranges was validated in pilot runs prior to the experi-
ment. Combinations of the three value ranges for the
left and right ear result in a factor with nine levels.

3.1.4 Transitions in IACC

The a priori known probabilities of detection of IACC
transitions (pIACC) are further considered. Half of the
stimulus pairs are chosen to be below the known JND
threshold of 50%. Ideally, for these stimuli, monaural
predictors for the two ears may be sufficient to explain
most of the perceived (or not perceived) differences.
The other half of the stimuli is chosen above the JND,
where (supra-threshold) binaural interactions are ex-
pected to superimpose monaural error behaviour. A
safety margin, accounting for ±0.05 at r2 = 0, is intro-
duced (see the dashed lines in Figure 1). All stimuli are
selected outside this margin, providing a more distinct
gap between the two conditions.

3.2 Stimulus selection and preparation

Given the available HRTF data, pairs of HRTF spectra
are sought, with the constraint of representing combi-
nations of the presented variables. Out of the given
216 condition combinations (= 6 · 2 · 9 · 2), only 210

cases could be fulfilled, as a small number of conditions
could not be met simultaneously.

With this approach for selection, multiple spatial direc-
tions are covered. It should be noted that only a direct
comparison of HRTF spectra for the same direction,
respectively, is offered. Thereby, the spatial cues corre-
sponding to these direction are contrasted between the
different datasets. These cue variations are restricted to
changes in magnitude. All HRTF spectra are processed,
replacing their phase by a minimum phase (calculated
from the respective magnitude spectra), and adding a
linear phase component for the runtime and an inter-
aural phase difference (IPD) fixed for all participants.
This direction-dependent IPD component is estimated
for the respective incidence angles using an analytical
ellipsoidal model [16], with mean head dimensions of
the ITA HRTF database [11] as model input.

3.3 Participants

A total of 25 participants (15 female, 10 male), aged
19 - 28 years (median: 26), took part in the experiment.
All possessed normal hearing, as verified by means of
a high frequency audiogram. This ensured the percep-
tibility of spectral variations in the whole frequency
range relevant for spatial cue detection.

4 Results

4.1 Experimental output

The listening experiment provides information on the
distinguishability of various stimulus pairs. The per-
centage of correct answers for these data points is each
calculated by averaging over the data of all participants
(25× 2 repetitions per stimulus pair). This information
can be set in relation with the descriptors introduced in
Section 2.

Figure 2 displays the relation between pcorrect and the
a-priori predictions of detectability for independent uni-
lateral variation at the left and right ear, respectively.
The color and size of the points indicate the percentage
of correct answers achieved. The black grid marks the
three ranges (low, medium, high) used for stimulus
selection. When all 210 stimulus pairs are taken into ac-
count (top), the monaural model output does not seem
to be (on its own) a good predictor for audibility, espe-
cially in the medium range. This is further examined
in Sec. 4.6 through regression analysis. Omitting the
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Fig. 2: Relation between the correct response rate and
the monaural model predictions. Top: Stim-
uli with both sub- and supra-threshold IACC
transitions are included. Bottom: The monau-
ral model performs better as the superimposed
supra-threshold IACC differences are excluded.

stimuli with supra-threshold IACC transitions (bottom)
removes the superimposed contribution to audibility
and leads to slightly better (though not ideal) corre-
spondence between the correct response rate and the
value ranges of pmon.

4.2 Modeling approach

Multi-linear regression is chosen, approximating the
percentage of correct answers pcorrect by a linear com-
bination of N descriptors:

pcorrect = c0 +
N

∑
i=1

ci · X̂i. (2)

The centered and normalized descriptors X̂i are calcu-
lated as

X̂i =
Xi−µx,i

σx,i
. (3)

The mean µx,i and standard deviation σx,i are deter-
mined based on the available model training data X
and are later used to center and normalize arbitrary
model input. As only the slope of the psychometric
function is modeled, a limitation to plausible values is
required. Given the 3-AFC paradigm, a guessing rate
of γ = 33.3% and a lapse rate of λ = 1% are assumed,
leading to

plimited = max{33.3%,min{99%, pcorrect}}. (4)

After this limitation, the data points are transformed to
a paradigm-independent value range, where with the
guessing rate is mapped to pdetect = 0% and the sought
threshold of pcorrect = 66.2% is mapped to 50%:

pdetect =
plimited− γ

(1−λ − γ)
. (5)

4.3 Binaural weighting

The input to the model requires a single value per de-
scriptor. This also holds for the monaural descriptors,
for which initially a value for the left and right ear com-
parisons are available, respectively. Three options for
combining these two values are considered.

mean: The ipsi- and contra-lateral ear descriptors are
equally weighted in a simple averaging calculation.

wMean: A directional weighting is introduced, giv-
ing higher importance to differences occurring at the
ipsi-lateral ear. Weighting curves, as constructed by
Baumgartner et al. [3] based on data from [17] and
[18], are used, see Fig. 3. Note that the lateral angle
φ is only equal to the azimuth angle in the front half
of the horizontal plane and is otherwise elevation- and
azimuth-dependent.

max: The ear with the higher value for a given monau-
ral descriptor is selected.

4.4 Correlation analysis

The selection of N potential descriptors to be used in
eq. (2) is subject to restrictions of collinearity [19]. Sub-
sets of descriptors with little to no correlation are there-
fore to be identified. Pearson correlation requires an
approximately normal distribution of input data points.
On this account, a logarithmic transform is applied to
counteract the initial skewness of the metric data. The
monaural prediction values pmon and the results pcorrect
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Fig. 3: Binaural weighting curves used in the wMean
condition for averaging over monaural descrip-
tors of the left and right ear (after [3].)

are exempted from this transform, as they already rep-
resent a good approximation of a normal distribution.
pIACC is further excluded from the transform due its bi-
modal distribution (a direct result of selecting the stim-
uli in two regions separated by a buffer zone around the
pre-known JND). Accordingly, the correlation values
for pIACC may not be valid and should be treated with
caution.

Mostly, similar trends are found in the correlation pat-
terns for the three binaural weighting approaches. Re-
sults for the mean case are shown in Figure 4. Rather
obvious is the moderate to strong correlation between
the monaural model output pmon and the monaural met-
rics from which it is calculated (especially issd with
r = 0.797, and mfcd with r = 0.641). Another mod-
erate to strong correlation of r = 0.706 between the
issd and issdILD is explicable in that both metrics
are based on spectral variance calculation. Furthermore,
the spectral progress of the ILD is implicitly affected by
the monaural cues present at the two ears. Accordingly,
the descriptors issdILD and pmon are also moderately
correlated (r = 0.534).

4.5 Model variants

The presence of correlated descriptors results in three
potential descriptor combinations, see i-iii in Ta-
ble 1. Pairs of descriptors that are mutually exclusive
to each other are accounted for in these sub-sets. E.g.,
pmon is omitted in models i and iii, and the three
monaural metrics are omitted from model ii. For di-
rect assessment of the need for binaural descriptors,
two additional control models (iv and v) are intro-
duced. Another degree of freedom is given by the three
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Fig. 4: Pearson correlation coefficients r for the de-
scriptors and experimental output pcorrect. Left
and right ear values of monaural descriptors are
equally weighted (mean). Coefficients of no
statistical significance (p > 0.05) are omitted.

binaural weighting approaches for monaural descrip-
tors. Furthermore, in addition to global modeling based
on all stimuli, two separate models, based only on data
points below (belowIACC) and above the IACC JND
(aboveIACC) are considered.

Applying the linear modeling approach to the N descrip-
tors leads to N + 1 linear coefficients. Using a back-
ward step-wise linear regression approach, the least
significant coefficients are successively excluded, until
p < 0.05 is fulfilled for all model components. The
resulting descriptors for the three cases are shown in
Table 2.

As can be seen, the subsets are reduced to a maximum
of four variables per model type. Neither of the binaural
descriptors related to the ILD provide a significant con-
tribution, whereas pIACC is only consistently present
when the training data considers all stimuli (both be-
low and above the IACC JND). In contrast, the step-
wise regression approach completely discards pIACC in
both the belowIACC and aboveIACC model vari-
ants, leading to purely monaural descriptors as input.
While expected for data below the IACC JND, this
behavior is rather surprising for aboveIACC models,
but could be explained by the small variation in pIACC
values covered within the two ranges.

Generally, a strong dominance of the mfcd metric
(and of the monaural predictions pmon in absence of
the mfcd) is observed in all cases.
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Table 1: Feasible combinations of (uncorrelated) de-
scriptors for linear modeling (i-iii) and
purely monaural input for control models
(iv,v). Note that the sub-sets will be further
reduced using step-wise linear regression.
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i x x x x - x -
ii - - - x - x x
iii x - x x x x -

iv x x x - - - -
v - - - - - - x

4.6 Model evaluation

The different model types are contrasted using two
numerical measures of quality. The root mean squared
error (RMSE)

RMSE =

√√√√ 1
Ntest

Ntest

∑
i=1

[pexp− ppred]2. (6)

and the linear correlation rpears are used to assess the
similarity between the detectability values pexp, as ob-
tained from the experiment (and transformed using
eq. (4) and (5)), and their corresponding model predic-
tions ppred. In order to assess the generalizability of the
model, these two quality measures are used on specified
test data points, not overlapping with model training
data. Within 500 iterations, 5/6 of the available points
are randomly selected for training the different model
types, leaving 1/6 as test data points for subsequent eval-
uation. The box plots in Figure 5 show the distribution
of error values over the iterations, respectively.

Improved model performance is indicated by lower
RMSE and higher Pearson correlation values. In this
regard, best results are given when using a direction-
dependent weighting while averaging left and right
ear monaural descriptors (wMean), followed by sim-
ple averaging (mean) and maximum selection (max).
More generally, models trained and tested on stimuli
below the IACC JND threshold show superior values,
followed by the global modeling (using all stimuli).

On the level of descriptors as model input, variants ii
and v, in their reduced form down to pmon (and pIACC),

show worst performance over all condition combina-
tions. For the belowIACC case, two-sample t-tests on
RMSE and rpears values show the variants i, iii and
iv to be significantly better than their 12 alternatives
(p < αadj = 0.05/105 after Bonferroni correction). The
quality measures of the three models, however, do not
vary significantly from each other. Note that i and iv
here use identical parameters (issd and mfcd) and
the visible discrepancies are only due to the random-
ized selection of training and test stimuli. The merged
datasets of these two cases result in an RMSEtest as
small as (µ ±σ ) = (15.72 ± 2.1)% and an rpears of
(0.71 ± 0.1), which is slightly (yet not significantly)
better than for variant iii.

Though the belowIACC case shows best results, the
test stimuli, here, all lie strictly below the IACC JND
– a condition generally not given for arbitrary HRTF
input. The more generalizable global modeling case
is therefore considered. For the wMean condition, the
step-wise reduction of i, iii and iv leads to retain-
ing mfcd, in addition to issd and/or pIACC. In terms
of RMSE values, the three models do not differ signif-
icantly. Correlation values rpears, however, show i to
be superior to all other models except model variant
iv, which on its part does not differ significantly from
iii. This indicates a small tendency for superiority
of model i in the wMean case, with an RMSEtest of
(µ±σ ) = (15.54 ± 1.53)% and rpears of (0.68 ± 0.08).

5 Discussion

The presented JND model for bi-lateral HRTF variation
puts a special focus on spectral magnitude differences.
All descriptors, except for pIACC, process solely mag-
nitude information. Evidently, the phase flows into the
IACC calculation. However, since IPDs are fixated for
all stimulus pairs, the only phase changes present are
due to the minimum phase component – which stands
in direct relation to the magnitude spectrum.

In practice, a switch between two generic HRTF sets
would likely entail changes to the ITD as well, which
would certainly contribute to distinguishability of stim-
uli. As the JND of ITDs has been widely examined
[20, 21], however, it is purposefully not included within
the covered descriptors. Future studies could examine
possible interactions and the relative importance of
phase- and magnitude-related factors.

The derived models are intended to be representative
for various types of HRTF variations. The experimental
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Table 2: Reduced descriptor combinations after backward step-wise linear regression. The three binaural weighting
approaches are indicated by the symbols ◦ (mean), • (wMean) and ∧ (max).
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i ◦∧ ◦•∧ ◦•∧ - - ◦•∧ - - • ◦•∧ - - - - ∧ ◦•∧ ◦•∧ - - - -
ii - - - - - ◦•∧ ◦•∧ - - - - - - ◦•∧ - - - - - - ◦•∧
iii ◦∧ - ◦•∧ - - ◦•∧ - - - ◦•∧ - - - - ◦∧ - ◦•∧ - - - -

iv ◦∧ ◦• ◦•∧ - - - - - • ◦•∧ - - - - ∧ ◦•∧ ◦•∧ - - - -
v - - - - - - ◦•∧ - - - - - - ◦•∧ - - - - - - ◦•∧

Fig. 5: Evaluation of model quality based on RMSE and Pearson correlation of experimental and predicted values
(pdetect). Each box plot represents 500 iterations of randomly selecting test (1/6) and training data subsets
(5/6 of total points.)

design, accordingly, integrates a comparison of HRTF
datasets with different degrees of detail loss as well as
typical inter-individual HRTF differences. Nonetheless,
it can be observed in the correlation pattern (Fig. 4) that
values of the mse metric are only slightly correlated
(r = 0.348) with the monaural prediction values (pmon).
This indicates that the range of mse values is barely
exploited by the choice of stimuli. The metric is fur-
thermore not (significantly) correlated with the correct
response rate (pcorrect), which explains its elimination
within the step-wise regression for more than half of
the model variants.

In the previous study [6], the relevance of the mse
metric for the monaural JND model was enforced by
representing the full space spanned by all three monau-

ral descriptors in the selection of stimuli. Here, how-
ever, a less constrained approach for stimulus selection,
only considering pcorrect, seems to support the relatively
lower impact of the mse metric. In the context of the
present study, a stimulus choice not covering a use-
ful range of this metric should not be considered as
an indicator for lack of variation in HRTF error types,
since multiple conditions were set in the experimental
design.

Further implications arise from the way IACC transi-
tions were integrated in stimulus selection. The ap-
proach was based on the initial assumption that this
property was to be considered as binary information.
E.g., it was presumed that IACC transitions would be
omitted from modeling in the sub-threshold case. This
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assumption has been confirmed, as pIACC exceeded the
significance level in the step-wise linear regression in
the belowIACC models. When training the model
using all stimuli, however, pIACC was retained as a de-
scriptor in some model variants. Thus, the safety mar-
gin, introduced between the sub- and supra-threshold
regions, see Figure 1, may in that case have negatively
affected the achievable model quality. A representa-
tion of data points close to the IACC JND within the
training data could provide more precise predictions.

The quality measures support a final model based
direction-dependent weighting of metrics mfcd and
issd, in addition to pIACC. Since the latter only con-
tributes to a “tendency” for enhancement in predictions,
it is questionable, whether it is worth the increase in
model complexity. Nonetheless, if the value turns out
to fall below the JND threshold, a model specifically
optimized for the belowIACC case may offer a more
significant improvement.

Finally, the model performance reported above shows
to be somewhat below that of the monaural model,
where an RMSE value of (µ±σ) = (14.31±1.91)%
and a correlation coefficient rpears of (0.75±0.09) were
achieved for the test data [6]. In both cases, one can
assume that the predictions of detectibility indicate
“tendencies”, rather than safe predictions. Nonetheless,
the monaural model was of great benefit in the context
of stimulus selection in the present work. In the pre-
vious study, the fact that stimulus selection was based
on three individual numerical descriptors had led to
restrictions in the pool of HRTFs to be used. E.g., the
measured database had to be excluded from the sub-
jective evaluation, since sub-threshold stimulus pairs
could not be identified easily. The tendencies result-
ing from the present model could be equally valuable,
depending on the context of use. E.g., they could be
applied in a comparable scenario, selecting stimuli for
a JND experiment involving more complex acoustic
scenes. In the direct evaluation of HRTF approxima-
tion methods, the model could still serve as an indicator
for perceivable similarity – that is yet to be used with
caution.

6 Summary

This work aimed at deriving JNDs of bi-laterally varied
HRTF sets, with focus on changes in the magnitude
spectrum. A 3-AFC experiment was conducted, assess-
ing the detectibility of changes in the spectra, while

retaining a fixed ITD. A uni-lateral JND model, also fo-
cusing on magnitude-related variations, was integrated
into the stimulus selection process and allowed for iden-
tifying sub-threshold transitions, even for the intricate
case of comparing measured HRTFs of different indi-
viduals. In the subsequent modeling steps, however,
the monaural model output proved to be less effective
in estimating a bi-lateral JND.

Instead, the metric mfcd showed to be dominant in
the models and, accordingly, well-suited for predict-
ing audible differences. The use of weighted means
(according to [3]) of the left and right ear monaural
descriptors was further shown to improve model per-
formance.

In terms of binaural cue descriptors, pIACC seems to
be of higher importance for JND modeling, compared
to the ILD – which however may be due to the choice
of the two employed ILD-related descriptors. These
descriptors may be perceptually less relevant for near-
threshold variations.

The acquired perceptual data relates to free-field
HRTFs convolved with pulsed noise signals. The ex-
periment can therefore be considered as a worst-case
situation, where differences between HRTF spectra are
emphasized. A more lenient JND threshold can be ex-
pected for a different choice of raw signals (e.g., music
or voice recordings) and for more complex acoustic
scenes. The derived model could be of use in designing
experimental settings to examine JNDs in such com-
plex scenarios. E.g., it could be applied in stimulus
selection, evaluating variations in both direct and re-
flected sound components – which would be partly
masked given the temporal structure of the binaural
room impulse response.

In overall, the model yields tendencies for detectability,
rather than safe predictions. However, it comes with
the advantage of being rather simple. A more com-
plex approach for modeling may be able to provide a
more accurate estimation – a trade-off that needs to be
considered in future work.
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