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ABSTRACT

Small form-factor and thin devices exhibit a high-pass frequency response due to loudspeaker-enclosure constraints.
The low-frequency reproduction loss from these devices severely degrades the audio experience for music and
cinematic content. This paper presents a new perceptual bass extension model using a side chain for music and
cinematic content and leveraging the principle of the missing fundamental frequency. Optimizing the nonlinear
function parameters enables the nonlinear function output to be invariant to input signal level changes. The model
employs a unique input gain normalization scheme based on loudness metadata and level-matching between
multiple side chains. A loudness compensation algorithm restores the perception of bass, particularly at low
playback levels. Subjective testing and perceptually derived objective metrics using television (TV) loudspeakers
validate the performance of the approach.

1 Introduction

There is a strong interest in psychoacoustic bass en-
hancement to improve the perceived bass frequencies
in audio signals from thin loudspeakers in small form-
factor enclosures. The traditional techniques involve
leveraging the percept of the missing fundamental
where the pitch of the fundamental is perceived in the
difference-frequencies of harmonics if the fundamental
is incapable of being reproduced by the loudspeaker
[1], [2], [3]. Conventionally [4] a side-chain synthe-
sizes the harmonic coefficients from the input audio
signal using a nonlinear function and a gain weight-
ing term. The side-chain signal is mixed in with a
delayed and high-pass filtered version of the input sig-
nal before delivering the output to the loudspeaker. A
technique for generating both even and odd harmonics,
using a half-wave rectifier for synthesizing even har-

monics and a clipper for odd harmonics, is presented in
[5]. The side-chain included downsampling and upsam-
pling operations in conjunction with short-time Fourier
transform for multi-band even and odd harmonic syn-
thesis. Shi et al. [6] demonstrated successful subjective
test results using a mapping of two nonlinear functions
(arc-tangent and exponent) to create the perception
of bass on parametric loudspeakers. Oo [7] analyzes
the arc-tangent-based nonlinear function and derives
a closed-form expression for the amplitude and phase
of individual harmonics. Giampiccolo [8] presents an
analog circuit model comparing three nonlinear func-
tions (including exponential nonlinearity) for real-time
music applications. The subjective testing results indi-
cate that different nonlinear functions are better suited
to different types of music (pop, electronic, R&B). A
frequency-domain Prony’s method to estimate the pa-
rameters of a low-pass input signal before harmonic
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synthesis is presented in [9]. Hoffmann et al. [10]
present a music genre-classifier with a nonlinear func-
tion (e.g., exponential) based harmonics synthesis for
virtual bass, and compare results with MaxxBass1. An
adaptive frequency tracking method [11] using anal-
ysis filterbanks and Linear Predictive Coding (LPC)
to generate harmonics of the dominant fundamental
frequency. Subsequently, a synthesis bandpass filter
(after the nonlinear function) is adjusted to select the
harmonics. A perceptually motivated objective grading
system [12], using the Rnonlin distortion model [13], is
used to identify classes of good (e.g., exponential non-
linearity), bass-killer, not-recommended, and highly
distorted nonlinear functions.

On the other hand, a spectrum-shifting phase-vocoder
[14] elicits an improved bass preference than the hidden
reference but consistently showed worse audio quality
preference (in terms of noise and distortion) compared
to the reference (cf. Fig. 15-17 in [14]). Nonetheless,
as shown in their paper, the phase-vocoder compares
better in both bass and audio quality with the state-
of-the-art MaxxBass system that employs a nonlinear
function. Hybrid approaches (e.g., [15], [16], [17])
combining nonlinear function with a phase vocoder
attempt to leverage the benefits of both models for
transient/percussive and harmonic (steady-state) sig-
nals. However, such approaches are compute-intensive
and introduce latency constraints for real-time process-
ing, especially with associated video. Mu [18] et al.
compare harmonic weighting schemes while tracking
the fundamental frequency using subjective tests and
a perceptually-derived objective metric. According
to the authors, the frequency-dependent tracking and
frequency-based harmonic synthesis replace a time-
domain nonlinear function since the time-domain non-
linear function is input signal level dependent (viz.,
the harmonics’ amplitude and the harmonics’ spectrum
envelope are input signal level-dependent). The percep-
tual metric was premised on Model Output Variables
(MOV) using Perceptual Evaluation of Audio Quality
(PEAQ) [19].

In this paper, we advance the conventional approach
(state-of-the-art) with a model (i) employing a nonlin-
ear function that is tuned to create controlled harmonics
where the harmonic excitation pattern (amplitudes and
envelope) is invariant to input signal level, (ii) having
a metadata-driven input gain normalization scheme,

1Waves Audio, https://www.waves.com/

(ii) including a level-matching mechanism between the
low-frequency effects and L+R side-chains, (iii) in-
corporating a loudness compensation scheme using
International Standards Organization (ISO) 226 [20]
loudness contours2 to maintain the perception of bass
at low playback levels, and (iv) tested on music and cin-
ematic content. We also perform exploratory analysis
between preference listening tests and multiple percep-
tually derived objective metrics, including Rnonlin [13]
and PEMO-Q [21]. Section 2 presents the proposed
model and associated optimizations for a Digital Signal
Processor (DSP) implementation. Section 3 provides
the subjective test results and ties these results with
objective metrics. Section 4 concludes/summarizes the
paper.

2 The Perceptual Bass Extension Model

Fig. 1 shows the model for perceptual bass extension
using the proposed time-domain nonlinearity with a
loudness metadata parser. A heuristic classifier based
on the number of audio channels in the embedded meta-
data, associated with the encoded audio or video format,
determines the content class (e.g., cinematic-movies,
documentaries) or non-cinematic3.
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Fig. 1: The perceptual bass extension model.

2.1 ITU Downmix with LFE

Only in the case of cinematic content, the pre-
processing step involves an ITU downmix [22] of the
left xL(n), right xR(n), surrounds (xLS(n), xRS(n)) and
center xC(n) channels as depicted in Fig. 1 at the out-
put of the audio decoder. In the case of music signals,
the low-frequency effect (LFE) side-chain is disabled
since the LFE channel is not present. The LFE channel

2A new version of the ISO document on loudness contours is
under development and due to be published in 2023

3The non-cinematic content is assumed to be music
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xLFE(n) undergoes harmonic synthesis processing for
cinematic content.

x′L(n) = xL(n)+0.707xC(n)+0.707xLS(n)

x′R(n) = xR(n)+0.707xC(n)+0.707xRS(n)

x′LFE(n) = xLFE(n) (1)

The side chain comprises two branches in the case of
cinematic content (i) a mono-downmix for x′L(n) and
x′R(n) input to a band-pass filter (BPF) that selects the
portion of the input signal that the loudspeakers cannot
reproduce, and (ii) the x′LFE(n) input to the second
band-pass filter (BPF). In the case of music content, the
LFE side-chain is disabled.

2.2 Metadata-based Input Gain Control

Streaming media include metadata either in the con-
tainer or the audio codec indicating the loudness in-
formation Loudi (i = {L,R}) for the full file. The pre-
sented model leverages this loudness metadata to nor-
malize the input signal gain to a reference value R (dB)
below 0 dBFS. Towards this goal, multiple models (be-
low) were evaluated to predict the gain, Pi (i = {L,R})
required for the peak in the music file to attain 0 dBFS
using the Loudi loudness metadata. The input nor-
malization to a reference gain R (dB) is performed to
minimize any audible effects from the interaction be-
tween the nonlinear compressor (described later) with
the combined time-domain harmonic-synthesis nonlin-
ear function φ(.) and the harmonic shaping filter F(ω).
An alternative approach would be to normalize to a
reference based on frame-level analysis, but this would
introduce audible artifacts, such as gain fluctuations be-
tween frames. The gains Gi (i = {L,R}) are expressed
as,

Gi =−R+Pi; (i = {L,R}) (2)

In the case of file-based media, the file-based loudness
metadata resides in the header for stereo content. A
metadata parser extracts this loudness metadata (in hex-
adecimal format) and converts it to a decimal number.
To develop a model fi that maps from loudness Loudi
space to Pi, a dataset of over 200 music files was ana-
lyzed by parsing the metadata and also by downloading
the corresponding music file, decoding to wav format,
and then computing Pi. Three candidate models, includ-
ing least-squares, regression, and neural network, were
assessed to predict Pi from Loudi using the dataset.

2.2.1 Least-squares (Lsq)

The least-squares optimal model W∗ ∈ ℜ2×2 is ob-
tained by a pseudo-inverse of the matrix Λ ∈ ℜN×2

comprising the loudness metadata converted to deci-
mal and post-multiplying with the matrix Φ ∈ ℜN×2

comprising the amount required in dB for the peak
amplitude in the content to reach 0 dBFS, and N is
the number of content-files used for developing the
model. We used 80% of the 202 files for the least
squares model development and 20% to test perfor-
mance. Specifically,

Λ =


Loud(1)

L Loud(1)
R

Loud(2)
L Loud(2)

R
. .

Loud(N)
L Loud(N)

R

 Φ =


P(1)

L P(1)
R

P(2)
L P(2)

R
. .

P(N)
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R


(3)

Accordingly,

Φ = ΛW
W∗ = (ΛT

Λ)−1
Λ

T
Φ

(4)

2.2.2 Linear Regression (Lreg)

The linear regression model employs quadratic terms
to determine the (αi,βi) coefficients and is represented
as,

PL = α0 +α1LoudL +α2LoudR +α3Loud2
L

+ α4Loud2
R (5)

PR = β0 +β1LoudL +β2LoudR +β3Loud2
L

+ β4Loud2
R

The unweighted (ordinary least-squares) fit yields the
best results for the present dataset after comparing dif-
ferent weighting schemes (e.g., logistic, Huber, An-
drews, Cauchy, etc.).

2.2.3 Nonlinear Regression (Nreg)

The nonlinear regression model employs quadratic
terms to determine the (δi,γi) coefficients and is repre-
sented as,

PL = δ0 +δ1Loudδ2
L +δ3Loudδ4

R

PR = γ0 + γ1Loudγ2
L + γ3Loudγ4

R (6)

For developing this model, the dataset size was 80% of
the 202 files that were scraped for loudness metadata
and correspondingly downloaded and decoded to wav
format.
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2.2.4 Neural network (FCNN)

A fully-connected feed-forward neural network [23]
was optimized using 60% training and 20% validation
dataset size (N = 202 files) after performing Bayesian
optimization [24] by using the number of layers and the
number of neurons per layer with the hyper-parameters.
The final network had one hidden layer with seven
neurons, tanh activation, and a linear output layer.

2.2.5 Comparative Results

Fig. 2 shows the results for estimating PL and PR from
the loudness metadata for both channels on the test
set of size 34 (total 68 samples for both channels).
The neural-network model gives the best result, which
is validated in the Table below after using the mean-
square-error between the true P and the predicted value
P̂

MSE =
1
34

(
34

∑
i=1

(P(i)
L − P̂(i)

L )2 +(P(i)
R − P̂(i

R )
2)) (7)

Lsq Lreg Nreg FCNN
MSE 4.38 0.18 0.23 0.13
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Fig. 2: Modeling loudness metadata to a full-scale gain
of the maximum audio sample value for the
given content.

2.3 Nonlinear Function (NLF)

Based on [4] and [7], a nonlinear function that neces-
sarily generates both even and odd harmonics is ap-
propriate for perceptual bass enhancement. However,

there is no guarantee that this class of functions will be
harmonically stable as a function of the fundamental
frequency and the level of the input signal ([7] and as
shown and explained related to Fig. 14b). Accordingly,
by properly tuning the NLF with two tuning parameters
κ1 and κ2, the harmonic excitation pattern (number of
harmonics and the envelope of the harmonics) remains
invariant to frequency and input signal level,

y(n)=

{
κ1(x(n)+(1−κ1)y(n−1));x(n)> y(n−1)
κ2x(n)+(1−κ2)y(n−1);else

(8)
An example of a properly tuned NLF (8) for f0 = 45 Hz,
generating even and odd harmonics, is shown in Fig. 3.
The filtered harmonics, depicted in the black curve, is
the output after a shaping response filter F(ω), which
suppresses the fundamental and attenuates harmonics
beyond the second harmonic f2. In this work, only the
first two harmonics, f1 and f2 of the fundamental f0,
are used to minimize the impact of intermodulation
components. Additionally, the shaping response filter,
F(ω), was fixed to a cascade of a band-pass filter to
pass the second and third harmonics and a second-order
biquad filter in the pass-band. The harmonic pattern
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Fig. 3: Example of shaped harmonic response for
f1 and f2 with f0 = 45 Hz (Note: The har-
monic shaping also rejects the fundamental fre-
quency).

is invariant in terms of the number of harmonics and
the shape and envelope of the harmonic spectrum, as
is evident in the orange curve in Fig. 4 for a sinusoid
with f0 = 50 Hz (green curve) at input levels of -20 dB,
-10 dB, 0 dB, and 10 dB. Comparatively, the good ex-
ponential NLF [7] (e− e1−x)/(e−1) shows harmonic
instability (blue curve) and which is a common concern
with time-domain nonlinear functions. By performing
a sinusoidal signal sweep below a loudspeaker cutoff
frequency (viz., in this setup being 75 Hz) and comput-
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Fig. 4: Influence of level on the harmonic pattern of a
sinusoidal signal of 50 Hz (blue: exponential
NLF, orange: presented NLF, green: fundamen-
tal) (a) -20 dB, (b) -10 dB, (c) 0 dB, (d) 10 dB.

ing the level difference between the first two desired
harmonics f1 and f2 (with fundamental f0) at various
input levels, one can observe the robustness of the har-
monic excitation pattern in Fig. 5. Specifically, the
x-axis is the sinusoid input frequency f0 and the y-axis
is the level difference, | f1− f2| between the first two
harmonics that are delivered to the shaping filter F(ω).
As can be seen, the presented NLF exhibits all the de-
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Fig. 5: Difference between the first two harmonics as
a function of the fundamental frequency for
different input sinusoidal signal gain.

sirable properties, such as generating both even and
odd harmonics. The harmonic pattern also maintains
invariance to the fundamental frequency and the input

signal level.

2.4 Side-chain Level Matching

After NLF, the level difference between the LFE and
the L+R mono-downmix side-chains for cinematic con-
tent is matched to the level difference between both
side-chains before the NLF to maintain the relative
loudness balance arising from the individual side-chain
processing. Fig. 1 depicts the processing in the side-
chain with the details shown in Fig. 6. The signals

Fig. 6: The signal level normalization for the low-
frequency effects channel.

with superscript ( f ) and (h) represent the input to the
NLF and the output from the NLF, respectively. The
dB gain between these two side chains is compared
before and after NLF processing, and a correction gain,
as the output from a first-order low-pass smoother, is
applied to the NLF-processed LFE side chain. Example
time-domain signals are shown in Fig. 7

2.5 Compressor

The input gain normalization using the predicted
peak amplitude keeps the side-chain compressor,
Ψ(τa,τr,T,K,CR), contribution to a minimum. This
minimal interaction with the NLF is achieved using
small values for the compression ratio CR = 1.25,
threshold T =−1.5 (dB), and knee width K = 0.5 dB.
The attack time τa and release time τr constants be-
ing 0.01 (sec) and 0.15 (sec), respectively. The core
equation governing the compressor core output signal,

AES 154th Convention, Espoo, Helsinki, Finland May 13-15, 2023
Page 5 of 10



Bharitkar et al. Bass Extension

(a) (b)

(c)

Fig. 7: Side-chain signals from Batman: The Dark
Knight (yellow: L+R mono, blue: LFE) (a) be-
fore level matching before NLF, (b) smoothed
LFE gain, (c) after level-matching and after
NLF.

x(comp)
dB (n), is,

x(comp)
dB (n) =


xdB(n) xdB(n)< ρ1

xdB(n)+Γ(n) ρ1 ≤ xdB(n)≤ ρ2

T + (xdB(n)−T )
CR xdB(n)> ρ2

(9)
where, xdB(n) = 20log10 |x(n)|, Γ(n) = ((1/CR)−
1)(xdB(n)−T +(K/2))2/2K, ρ1 = (T − K

2 ), and ρ2 =

(T + K
2 ). The compressor core output is applied to a

low-pass filter with the aforementioned attack and re-
lease time constants. The resulting signal is mixed in
with the original signal filtered by a constant delay.

2.6 Playback Loudness Compensation (Dynamic
EQ)

ISO 226 [20] has introduced updated equal-loudness
contours for different levels from 20 dB through 100
dB (referenced at 1 kHz). The contours show that the
human auditory response spectrum changes with level,
leading to a loss of bass and higher frequencies at low
levels. The TV speakers’ C-weighted sound pressure
level (SPL) was measured using calibrated pink noise
at different playback volume settings, with the SPL
mapped to the corresponding ISO curve. For a refer-
ence volume setting of 60 (mid-volume reference level),
the SPL was 73 dBC. For lower volume (volume setting
30 on the TV), the SPL mapped to 65 dBC, whereas for

the high volume condition (volume setting 80), the SPL
was 77 dBC. Differential loudness contours [25] were
computed between the reference level ISO curve and
the low and high volume ISO curves. Fig. 8 depicts an
example of this process for the reference mid-volume
curve (blue) and low-volume (red) curves normalized
at 1 kHz. The low-frequency and high-frequency gains
(shown in green) are computed based on these curves’
differences. A cascade of shelf filters models this dif-
ference with an additional high shelf, ensuring no gain
below the cutoff frequency of the TV speakers (≈ 75
Hz). The purple curve shows the resulting low-volume
compensating filter.
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Fig. 8: Example loudness compensating filter between
reference playback volume and low volume.

2.7 Test Platform

The optimized PBE algorithm, leveraging NLF com-
pute optimizations, was tested on a custom board with
a single-core ARM Cortex-M7 processor running at
600 MHz. The input and output interfaces were S/PDIF,
running at 48 kHz. This processor has a floating-point
math unit; hence, the C/C++ code used floating-point
throughout. Some speed improvement may be realized
if fixed-point processing were used. The performance
of the stereo floating-point PBE algorithm on the ARM
M7 is 5.6 MCPS. For a stereo + LFE input, the PBE
algorithm uses 26.7 MCPS.

3 Results

Fig. 9 (blue curve) shows the resulting reference-
volume pink-noise spectrum simulated at the input
of the TV loudspeakers with the processing disabled,
whereas the black curve shows the resulting pink-noise
spectrum with the perceptual processing. The relative
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curves show that the NLF and shaping filter response
F(ω) introduce a negligible change in the pink-noise
spectrum from the off condition. The measurements
at the output of the TV speakers will show additional
roll-off below the cutoff frequency of ≈ 75 Hz.
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Fig. 9: Pink noise spectrum comparing the proposed
approach versus reference (PBE bypass).

3.1 Subjective Testing

A listening test was conducted on a properly equalized
and level-calibrated television (Samsung GQ55 QN90
TV) in a listening room to assess the effect of the pre-
sented algorithm on the listener’s preference. Stereo
audio samples were processed using the PBE and PBE
with Dynamic EQ algorithms. The test consisted of a
comparison between the Reference content, PBE, and
PBE with Dynamic EQ. As the dynamic algorithm ad-
justs the PBE processing to the playback volume, the
test was divided into three sessions, each corresponding
to one playback level. Specifically, (i) medium level
(Volume 60) for which the PBE and PBE+dynamic
EQ conditions are the same (73 dBC), (ii) higher level
(Volume 80) at 77 dBC, and (iii) lower level (Volume
30) at 65 dBC. Three cinematic and music tracks were
selected, as detailed in Table 1, which resulted in six tri-
als for each session. The assessors listened to the three
listening conditions, A, B, and C, and rated them ac-
cording to their preference on a scale ranging from 0 to
100. A Max/MSP custom interface enabled the listen-
ers to control the playback and to give their scores. The
arrangement of the conditions and the order of presen-
tation of the audio samples were automatically random-
ized. The three test sessions were randomly assigned
between subjects. Thirteen assessors participated in
each listening test session, including eight trained and
five naive listeners. All three sessions were analyzed

Table 1: Listening material

Label Type Content Source Duration

TDK Cinematic Bank robbery
scene

Warner Bros. The
Dark Knight

11s

INT Cinematic Music and dia-
log

Paramount Pictures In-
terstellar

13s

MM Cinematic Cars engines,
gun fights

Warner Bros. Mad
Max: Fury Road

20s

AF Music Electronic mu-
sic

H. Faltermeyer/ MCA
Records Axel F

16s

NP Music Rock music,
vocals and bass
guitar

A.R Rahman Nadaan
Parinde

16s

SA Music Disco Bee Gees/ RSO
Records Stayin’Alive

8s

independently. The results for the low, medium, and
high levels are shown in Figs. 11, 12, and 13 respec-
tively. The data were screened for outliers and tested
for homoscedasticity and normal distribution. A 2-way
ANOVA procedure was then employed to evaluate the
effect of the Condition and Sample factors on scores,
and paired t-tests were applied to compare the mean
scores of each pair of conditions.

In all three sessions (Fig. 10), the effect of the lis-
tening condition is statistically significant, with no
significant effect of the sample factor. The PBE and
PBE+Dynamic EQ were rated closely, while the ref-
erence sample scored lower (see Table 2). Higher dis-
crimination between the conditions is observable with
the low-volume setting. The PBE+Dynamic EQ con-
dition scored significantly higher than the PBE stimuli
for the low-volume test, while no significant difference
was noticeable between these two conditions at higher
volumes. Only the condition factor was significant in

Table 2: Mean scores, per volume level and listening
condition

Mean Score Reference PBE Dynamic EQ

Low Volume 54.2 72.7 78

Medium Volume 58.3 75.9 74.3

High Volume 60.6 75.3 72.9
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(a) (b)

(c)

Fig. 10: Results (green: reference played from TV,
cyan: PBE from TV, blue: PBE+dynamic EQ
from TV) for the (a) low volume listening test,
per condition, (b) medium volume listening
test, per condition, and (c) high volume listen-
ing test, per condition.

the lower level test session, with pcondition = 1.1e−4.
Paired comparisons revealed that the difference be-
tween all conditions’ ratings was statistically signifi-
cant, with pre f−pbe = 1.4e−10, pre f−dyn = 3.6e−11 and
ppbe−dyn = 0.0036. The listening condition factor sig-
nificantly affected the ratings in the medium-level test,
with pcondition = 5e−5. The PBE and PBE+dynamic
EQ conditions received close ratings and did not sig-
nificantly differ (p = 0.3), but both were rated signifi-
cantly higher than the reference condition (pre f−pbe =
1.9e−12, pre f−dyn = 9.7e−11). A statistically signifi-
cant interaction between the effects of the sample and
condition factors was found (pinteraction = 1.5e−8). The
MM and NP tracks caused less discrimination between
the conditions. The high volume-level test gave similar
results, with a significant effect of the condition fac-
tor (pcondition = 0.025). Although the PBE+dynamic

Fig. 11: Results for the low volume listening test, per
condition and sample

Fig. 12: Results for the medium volume listening test,
per condition and sample

EQ condition was rated slightly lower than the PBE
condition, the two mean scores did not significantly
differ. Like the other test sessions, these two conditions
were rated significantly higher than the reference, with
pre f−pbe = 4.6e−6 and pre f−dyn = 1.5e−4. The analy-
sis also showed a significant interaction between the
sample and condition factors (pinteraction = 0.003). A
similar rating trend is noticeable for all samples, but
some tracks, including MM, INT, and NP, introduced
smaller discrimination between the conditions.

3.2 Objective Metrics: Exploratory Analysis

Towards developing a perceptual metric suited for per-
ceptual bass extension, an exploratory analysis was
performed at reference volume (without dynamic EQ)
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Fig. 13: Results for the high volume listening test, per
condition and sample

for all test content using perceptual nonlinear distortion
metrics Rnonlin [12] [7] and PEMO-Q (viz., PSMt)
[21]. Both perceptual metrics operate on mono chan-
nels, so the output from both channels is averaged to
give a single metric for the provided test content. The
results from Rnonlin and PEMO-Q show that the pre-
sented solution attains a high value for all test content,
and the trend for these metrics and the preference scores
from subjective tests match reasonably well. Further-
more, as an exercise in determining equivalency be-
tween the Rnonlin values in this paper and the results
shown in [7] (cf. Fig. 9 and Table 8 with eq. (20))
for various side-chain NLFs, the Rnonlin values using
the presented NLF and side-chain map to Mean Opin-
ion Scores (MOS) ranging between 7 and 9.5 for the
reference mid-volume test content.
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Fig. 14: Perceptual/objective metrics relative to Prefer-
ence scores for the 6-test items at medium vol-
ume (a) Rnonlin and Preference, (b) PEMO-Q
and Preference Scores.

4 Conclusions and Future Directions

Uncontrollable harmonics are a pervasive problem with
time-domain nonlinear functions (NLF). However, the
advantages of using time-domain NLFs include low-
complexity implementation. This paper presented an
NLF selectively tuned to generate harmonics invari-
ant to the input frequency and signal level (viz., con-
trolled harmonics). In conjunction with even and odd-
harmonic synthesis, this attribute results in a preferred
performance in subjective tests (with music and cine-
matic content) and with established perceptual metrics.
We also present a technique for normalizing the input
signal gain to a reference level using loudness meta-
data and level normalization between the LFE and L+R
side chains (for cinematic content). A playback level
compensation scheme is incorporated to maintain a
proper low- and high-frequency balance at low and
high-volume listening conditions (compared to a refer-
ence mid-volume condition). Future directions include
the development of an adaptive shaping filter, F(ω), op-
timized for each content, and exploring a fusion metric
based on combining Rnonlin and PEMO.
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